On global robust stability of interval Hopfield neural networks with delay (Q2477244)

From MaRDI portal
scientific article
Language Label Description Also known as
English
On global robust stability of interval Hopfield neural networks with delay
scientific article

    Statements

    On global robust stability of interval Hopfield neural networks with delay (English)
    0 references
    0 references
    13 March 2008
    0 references
    Differential equations with delay \[ x_i'(t)= -c_ix_i(t)+ \sum^n_{j=1} a_{ij} f_j(x_j(t))+ \sum^n_{j=1} b_{ij}f_j(x_j(t- \tau))+ u_i,\;i= 1,\dots, n,\tag{1} \] are considered, where \(u= (u_1,u_2,\dots, u_n)\) is a constant vector. The functions \(f_j(x_j)\) satisfy the following conditions: (A1) \(|f_j(\xi)|\leq M_j\), \(j= 1,\dots, n\); (A2) \(0\leq {f_j(\xi_1)- f_j(\xi_2)\over \xi_1- \xi_2}\leq L_j\), \(j= 1,\dots, n\). Therefore, the constants \(c_i\), \(a_{ij}\) and \(b_{ij}\) may be considered as intervalized as follows: \[ \underline{c_i}\leq c_i\leq\overline{c_i},\quad \underline{a_{ij}}\leq \overline{a_{ij}}\quad\text{and}\quad \underline{b_{ij}}\leq b_{ij}\leq\overline{b_{ij}},\quad i,j= 1,\dots, n. \] The present global robust stability criterion. Theorem. Under the assumptions (A1) and (A2) the equilibrium point \(x=x^*\) of (1) is globally robust stable if there are a positive diagonal matrix \(P= \text{diag}\{p_1,p_2,\dots, p_n\}\) and a positive definite matrix \(D\), such that \[ 2rI_n+ S-\| D\|_2 I_n-\| P\|^2_2\| D^{-1}\|_2(\| B^*\|_2+\| B_*\|_2)^2\quad I_n> 0, \] where \(I_n\) denotes the \(n\times n\) identity matrix, \(r= \min_i\{{p_i\underline{c_i}\over L_i}\}\), \(S= \{s_{ij}\}\) is matrix \[ s_{ij}= \begin{cases} -2p_i\overline{a_{ij}},\quad &\text{if }i= j,\\ -\widetilde a_{ij},\quad &\text{if }i\neq j,\end{cases}\;\widetilde a_{ij}= \max\{|p_i\overline{a_{ij}}+ p_j\overline{a_{ji}}|,\,|p_i\underline{a_{ij}}+ p_j \underline{a_{ji}}|\}. \] The proof is based on a Lyapunov-Krasovskii functional. The derivative of the functional is negative define, that is zero solution of the system is stable.
    0 references
    neural networks
    0 references
    delay
    0 references
    stability
    0 references

    Identifiers