Precise rates in log laws for NA sequences (Q2478369)

From MaRDI portal
scientific article
Language Label Description Also known as
English
Precise rates in log laws for NA sequences
scientific article

    Statements

    Precise rates in log laws for NA sequences (English)
    0 references
    28 March 2008
    0 references
    Summary: Let \(X_1,X_2,\dots\) be a strictly stationary sequence of negatively associated (NA) random variables with \(EX_1=0\), set \(S_n=X_1+\cdots+X_n\), suppose that \(\sigma^2= EX_1^2+2 \sum_{n=2}^\infty EX_1X_n>0\) and \(EX_1^2<\infty\), if \(-1<\alpha\leq1\); \(EX_1^2(\log|X_1|)^\alpha<\infty\), if \(\alpha>1\). We prove \(\lim_{\varepsilon\downarrow0} \varepsilon^{2\alpha+2} \sum_{n=1}^\infty ((\log n)^\alpha/n) P(|S_n|\geq \sigma(\varepsilon+\kappa_n) \sqrt{2n\log n})= 2^{-(\alpha+1)}(\alpha+1)^{-1} E|N|^{2\alpha+2}\), where \(\kappa_n= O(1/\log n)\) and \(N\) is the standard normal random variable.
    0 references
    0 references

    Identifiers