Invariant subspaces of Toeplitz operators and uniform algebras (Q2481524)

From MaRDI portal





scientific article
Language Label Description Also known as
English
Invariant subspaces of Toeplitz operators and uniform algebras
scientific article

    Statements

    Invariant subspaces of Toeplitz operators and uniform algebras (English)
    0 references
    10 April 2008
    0 references
    The author studies the invariant subspaces of Toeplitz operators in an abstract Hardy space \(H^p\). Let \(\operatorname{Lat} T_{\varphi}\) be the set of all invariant subspaces of a Toeplitz operator \(T_{\varphi}\) and \(\operatorname{Lat} \mathcal{A}=\cap \{\operatorname{Lat} T_{\varphi}:\varphi \in H^{\infty}\}\), where \(\mathcal{A}=\{T_{\varphi}:\varphi\in H^{\infty}\}\). In particular, the following four questions are considered in the abstract setting. (1) \(\operatorname{Lat} T_{\varphi} \supseteq \operatorname{Lat}\mathcal{A} \Longrightarrow T_{\varphi} \in \mathcal{A} \,?\) (2) \(\operatorname{Lat}T_{\varphi} \subsetneq \operatorname{Lat}\mathcal{A} \Longrightarrow \operatorname{Lat}T_{\varphi} =\{\langle0\rangle, H^2\} \,?\) (3) \(\operatorname{Lat} \mathcal{A}^* \cap \operatorname{Lat}\mathcal{A}=\{\langle0\rangle, H^2\}\), where \(\mathcal{A^*}=\{T_{\varphi}^*:\varphi\in H^{\infty}\} \,?\) (4) What is \(\operatorname{Lat} T_{\varphi} \cap \operatorname{Lat}\mathcal{A}\)\,?
    0 references
    0 references
    Toeplitz operator
    0 references
    invariant subspace
    0 references
    analytic symbol
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references