Invariant subspaces of Toeplitz operators and uniform algebras (Q2481524)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Invariant subspaces of Toeplitz operators and uniform algebras |
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Invariant subspaces of Toeplitz operators and uniform algebras |
scientific article |
Statements
Invariant subspaces of Toeplitz operators and uniform algebras (English)
0 references
10 April 2008
0 references
The author studies the invariant subspaces of Toeplitz operators in an abstract Hardy space \(H^p\). Let \(\operatorname{Lat} T_{\varphi}\) be the set of all invariant subspaces of a Toeplitz operator \(T_{\varphi}\) and \(\operatorname{Lat} \mathcal{A}=\cap \{\operatorname{Lat} T_{\varphi}:\varphi \in H^{\infty}\}\), where \(\mathcal{A}=\{T_{\varphi}:\varphi\in H^{\infty}\}\). In particular, the following four questions are considered in the abstract setting. (1) \(\operatorname{Lat} T_{\varphi} \supseteq \operatorname{Lat}\mathcal{A} \Longrightarrow T_{\varphi} \in \mathcal{A} \,?\) (2) \(\operatorname{Lat}T_{\varphi} \subsetneq \operatorname{Lat}\mathcal{A} \Longrightarrow \operatorname{Lat}T_{\varphi} =\{\langle0\rangle, H^2\} \,?\) (3) \(\operatorname{Lat} \mathcal{A}^* \cap \operatorname{Lat}\mathcal{A}=\{\langle0\rangle, H^2\}\), where \(\mathcal{A^*}=\{T_{\varphi}^*:\varphi\in H^{\infty}\} \,?\) (4) What is \(\operatorname{Lat} T_{\varphi} \cap \operatorname{Lat}\mathcal{A}\)\,?
0 references
Toeplitz operator
0 references
invariant subspace
0 references
analytic symbol
0 references