Maximally singular functions in Besov spaces (Q2501156)

From MaRDI portal
scientific article
Language Label Description Also known as
English
Maximally singular functions in Besov spaces
scientific article

    Statements

    Maximally singular functions in Besov spaces (English)
    0 references
    0 references
    4 September 2006
    0 references
    For a measurable function \(u: \mathbb R^n \mapsto \mathbb R\), a point \(a \in \mathbb R^n\) is called singular if \(u(x) \geq C | x-a| ^{-\gamma}\) for some \(C>0\), \(\gamma >0\), near \(a\). Let \[ s- \dim X = \sup \{ \dim_H (\text{Sing\,} u) : \;u \in X \}, \] where \(\text{Sing\,}u\) collects the singular points of \(u\), and \(X\) is a set of functions. Let \[ X = B^s_{pq} (\mathbb R^n) \quad \text{or} \quad X= F^s_{pq} (\mathbb R^n), \quad 1<p,q < \infty, \quad 0< s \leq n/p. \] Then \[ s-\dim (B^s_{pq} (\mathbb R^n)) = s-\dim (F^s_{pq} (\mathbb R^n)) = n-sp \] is the main result of the paper.
    0 references
    0 references
    Besov spaces
    0 references
    Lizorkin-Triebel spaces
    0 references
    Hausdorff dimension
    0 references

    Identifiers