Flag Hardy spaces and Marcinkiewicz multipliers on the Heisenberg group (Q2513736)

From MaRDI portal
scientific article
Language Label Description Also known as
English
Flag Hardy spaces and Marcinkiewicz multipliers on the Heisenberg group
scientific article

    Statements

    Flag Hardy spaces and Marcinkiewicz multipliers on the Heisenberg group (English)
    0 references
    0 references
    0 references
    0 references
    28 January 2015
    0 references
    In this paper, the authors first introduce the test spaces \(\mathcal{M}_{\mathrm{flag}}^M(\mathbb{H}^n)\) associated with the flag structure on the Heisenberg group \(\mathbb{H}^n:=\mathbb{C}^n\times\mathbb{R}\) by projecting the corresponding product test spaces \(\mathcal{M}_{\mathrm{flag}}^M(\mathbb{H}^n\times\mathbb{R})\) onto \(\mathbb{H}^n\), where \(M\in\mathbb{N}\). Let \(\mathrm{Q}\) be the collection of all dyadic Heisenberg cubes and \(\mathrm{R}_{\mathrm{vert}}\) be the collection of all strictly vertical dyadic Heisenberg rectangles. For any \((z,u)\in\mathbb{H}^n\), the wavelet Littlewood-Paley \(g\)-function \(g_{\mathrm{flag}}\), which is adapted to the flag structure on \(\mathbb{H}^n\), is defined by \[ g_{\mathrm{flag}}(f)(z,u) :=\left\{\sum_{\mathcal{Q}\in\mathrm{Q}}|\psi^\prime_{\mathcal{Q}} \ast f(z_{\mathcal{Q}},u_{\mathcal{Q}})|^2\chi_{\mathcal{Q}}(z,u) +\sum_{\mathcal{R}\in\mathrm{R}_{\mathrm{vert}}}|\psi^\prime_{\mathcal{R}}\ast f(z_{\mathcal{R}}, u_{\mathcal{R}})|^2\chi_{\mathcal{R}}(z,u)\right\}^{\frac12}, \] where \(\psi^\prime_{\mathcal{Q}}\), \(\psi^\prime_{\mathcal{R}}\) are component functions, and \(z_{\mathcal{Q}},\,u_{\mathcal{Q}}\) and \(z_{\mathcal{R}}, u_{\mathcal{R}}\) are any fixed points, respectively, in \(\mathcal{Q}\) and \(\mathcal{R}\). Let \(p\in(0,\infty)\). The flag Hardy space \(H_{\mathrm{flag}}^p(\mathbb{H}^n)\) on the Heisenberg group \(\mathbb{H}^n\) is defined by \[ H_{\mathrm{flag}}^p(\mathbb{H}^n):=\left\{f\in{\mathcal{M}^{M+\delta}_{\mathrm{flag}}(\mathbb{H}^n)}^\prime:\;g_{\mathrm{flag}}(f)\in L^p(\mathbb{H}^n)\right\}, \] where \({\mathcal{M}^{M+\delta}_{\mathrm{flag}}(\mathbb{H}^n)}^\prime\) denotes the dual of \(\mathcal{M}^{M+\delta}_{\mathrm{flag}}(\mathbb{H}^n)\) and \(M\) is sufficiently large depending on \(n\) and \(p\). For \(f\in H_{\mathrm{flag}}^p(\mathbb{H}^n)\), let \[ \|f\|_{H_{\mathrm{flag}}^p(\mathbb{H}^n)}:=\|g_{\mathrm{flag}}(f)\|_{L^p(\mathbb{H}^n)}. \] A flag convolution kernel on \(\mathbb{H}^n\) is a distribution \(K\) on \(\mathbb{R}^{2n+1}\) which coincides with a \(C^\infty\) function away from the coordinate subspace \(\{(0,u):\;0\in\mathbb{C}^n,\;u\in\mathbb{R}\}\subset\mathbb{H}^n\), and satisfies the following two conditions: (i) For any multi-indices \(\alpha=(\alpha_1,\,\ldots,\,\alpha_n)\), \(\beta=(\beta_1,\,\ldots,\,\beta_m)\), \[ |\partial_z^\alpha\partial_u^\beta K(z,u)|\leq C_{\alpha,\beta}|z|^{-2n-|\alpha|} (|z|^2+|u|)^{-1-|\beta|} \] for all \((z,u)\in\mathbb{H}^n\) with \(z\neq0\). (ii) For every multi-index \(\alpha\) and every normalized bump function \(\phi_1\) on \(\mathbb{R}\) and every \(\delta>0\), \[ \left|\int_\mathbb{R}\partial_z^\alpha K(z,u)\phi_1(\delta u)\,du\right| \leq C_\alpha|z|^{-2n-|\alpha|}; \] for every multi-index \(\beta\), every normalized bump function \(\phi_2\) on \(\mathbb{C}^n\) and every \(\delta>0\), \[ \left|\int_{\mathbb{C}^n}\partial_u^\beta K(z,u)\phi_2(\delta z)\,dz\right| \leq C_\beta|u|^{-1-|\beta|}; \] and for every normalized bump function \(\phi_2\) on \(\mathbb{H}^n\) and every \(\delta_1>0\) and \(\delta_2>0\), \[ \left|\int_{\mathbb{H}^n} K(z,u)\phi_3(\delta_1z,\delta_2u)\,dz\,du\right|\leq C. \] In this paper, the authors mainly prove that, if \(T\) is a flag singular integral with a flag convolution kernel \(K\), then, for all \(p\in(0,1]\), there exists a constant \(C_{p,n}\), depending on \(p\) and \(n\), such that \[ \|Tf\|_{H_{\mathrm{flag}}^p}\leq C_{p,n}\|f\|_{H^p_{\mathrm{flag}}}. \] As a corollary, the Marcinkiewicz multipliers are bounded on \(H^p_{\mathrm{flag}}(\mathbb{H}^n)\). The authors also characterize the dual spaces of \(H^p_{\mathrm{flag}}(\mathbb{H}^n)\), for \(p\in(0,1]\), and establish a Calderón-Zygmund decomposition that yields standard interpolation theorems for \(H^p_{\mathrm{flag}}(\mathbb{H}^n)\).
    0 references
    flag Hardy spaces
    0 references
    Heisenberg group
    0 references
    flag singular integrals
    0 references
    Marcinkiewicz multipliers
    0 references
    discrete Calderón reproducing formula
    0 references
    discrete Littlewood-Paley analysis
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references