The critical values of certain Dirichlet series (Q2517773)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The critical values of certain Dirichlet series |
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The critical values of certain Dirichlet series |
scientific article |
Statements
The critical values of certain Dirichlet series (English)
0 references
9 January 2009
0 references
For primitive and nontrivial character \(\chi \), the function \(L\left( s,\chi \right) \) is defined by \(L\left( s,\chi \right) =\sum_{n=1}^{\infty }\chi \left( n\right) n^{-s}\). For \(s=1-k\) with \(k\) is a positive integer, Hecke proved \[ kd^{1-k}L\left( 1-k,\chi \right) =-\sum_{a=1}^{d-1}\chi \left( a\right) B_{k}\left( \dfrac{a}{d}\right), \] where \(B_{k}\left( t\right) \) is the Bernoulli polynomial of order \(k\). The author gives elementary proofs for formulas regarding \(L\left( 1-k,\chi \right) \) and considers similar values of a few more types of Dirichlet series.
0 references