The critical values of certain Dirichlet series (Q2517773)

From MaRDI portal





scientific article
Language Label Description Also known as
English
The critical values of certain Dirichlet series
scientific article

    Statements

    The critical values of certain Dirichlet series (English)
    0 references
    9 January 2009
    0 references
    For primitive and nontrivial character \(\chi \), the function \(L\left( s,\chi \right) \) is defined by \(L\left( s,\chi \right) =\sum_{n=1}^{\infty }\chi \left( n\right) n^{-s}\). For \(s=1-k\) with \(k\) is a positive integer, Hecke proved \[ kd^{1-k}L\left( 1-k,\chi \right) =-\sum_{a=1}^{d-1}\chi \left( a\right) B_{k}\left( \dfrac{a}{d}\right), \] where \(B_{k}\left( t\right) \) is the Bernoulli polynomial of order \(k\). The author gives elementary proofs for formulas regarding \(L\left( 1-k,\chi \right) \) and considers similar values of a few more types of Dirichlet series.
    0 references
    0 references
    0 references

    Identifiers