A necessary condition for the completeness of the system \(\{e^{-\lambda_n t}\mid\operatorname{Re}\lambda_n > 0\}\) in the spaces \(C _{0}(\mathbb R_{+})\) and \(L^p (\mathbb R_{+})\), \(p > 2\) (Q2518038)

From MaRDI portal
scientific article
Language Label Description Also known as
English
A necessary condition for the completeness of the system \(\{e^{-\lambda_n t}\mid\operatorname{Re}\lambda_n > 0\}\) in the spaces \(C _{0}(\mathbb R_{+})\) and \(L^p (\mathbb R_{+})\), \(p > 2\)
scientific article

    Statements

    A necessary condition for the completeness of the system \(\{e^{-\lambda_n t}\mid\operatorname{Re}\lambda_n > 0\}\) in the spaces \(C _{0}(\mathbb R_{+})\) and \(L^p (\mathbb R_{+})\), \(p > 2\) (English)
    0 references
    0 references
    12 January 2009
    0 references
    sequence of exponentials
    0 references
    the spaces \(C_0 (\mathbb R_{+})\) and \(L^{p}(\mathbb R_{+})\)
    0 references
    Szász condition
    0 references
    Hardy class of functions
    0 references
    Bernstein's inequality
    0 references
    analytic function
    0 references

    Identifiers