A necessary condition for the completeness of the system \(\{e^{-\lambda_n t}\mid\operatorname{Re}\lambda_n > 0\}\) in the spaces \(C _{0}(\mathbb R_{+})\) and \(L^p (\mathbb R_{+})\), \(p > 2\) (Q2518038)
From MaRDI portal
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A necessary condition for the completeness of the system \(\{e^{-\lambda_n t}\mid\operatorname{Re}\lambda_n > 0\}\) in the spaces \(C _{0}(\mathbb R_{+})\) and \(L^p (\mathbb R_{+})\), \(p > 2\) |
scientific article |
Statements
A necessary condition for the completeness of the system \(\{e^{-\lambda_n t}\mid\operatorname{Re}\lambda_n > 0\}\) in the spaces \(C _{0}(\mathbb R_{+})\) and \(L^p (\mathbb R_{+})\), \(p > 2\) (English)
0 references
12 January 2009
0 references
sequence of exponentials
0 references
the spaces \(C_0 (\mathbb R_{+})\) and \(L^{p}(\mathbb R_{+})\)
0 references
Szász condition
0 references
Hardy class of functions
0 references
Bernstein's inequality
0 references
analytic function
0 references