Conditional stability and numerical reconstruction of initial temperature (Q2518240)

From MaRDI portal
scientific article
Language Label Description Also known as
English
Conditional stability and numerical reconstruction of initial temperature
scientific article

    Statements

    Conditional stability and numerical reconstruction of initial temperature (English)
    0 references
    0 references
    0 references
    0 references
    15 January 2009
    0 references
    The authors consider the stable reconstruction of the initial temperature \[ y(\cdot,0)\in\left\{a\in H^{2\varepsilon}(\Omega)| \|a\|_{H^{2\varepsilon}(\Omega)}\leq M\right\}, \] where \(\varepsilon>0\), \(M>0\) are given fixed numbers, \(\Omega\subset \mathbb{R}^N\) \((N\geq 2)\) is a bounded domain with smooth boundary, entering the heat conduction equation with homogeneous Dirichlet boundary conditions, namely \[ \begin{cases} y_t=-c(x)y+\sum^N_{i,j=1}\frac {\partial} {\partial x_i}\left(a_{ij}(x)\frac{\partial y}{\partial x_j}\right) \quad \text{in }\Omega\times(0,T)\\ y|_{\partial\Omega\times(0,T)}=0 \end{cases} \] where \(c\in L^\infty(\Omega)\), \(c\geq 0\) a.e. in \(\Omega\), \(a_{ij}=a_{ji}\in C^1(\overline\Omega)\) and \[ \alpha_0\xi^{\text{tr}}\cdot\xi\leq\sum^N_{i,j=1}a_{ij}(x)\xi_i\xi_j,\quad\forall x\in \Omega,\xi\in\mathbb{R}^N, \] for some \(\alpha0>0\). Then it is proved that: {\parindent=8mm \begin{itemize}\item[(i)]There exists a constant \(k=k(M,\varepsilon)\in(0,1)\) such that \[ \|y(\cdot,0)\|_{L^2(\Omega)}\leq C(M,\varepsilon)\left(-\log\|y\|_{L^2 (\omega\times(\tau,\tau))}\right)^{-k}, \] for some constant \(C(M, \varepsilon)>0\), where \(\tau\in(0,T)\) is fixed and \(\omega\subset \Omega\) subset of non-zero measure. \item[(ii)]There exists a constant \(k=k(M,\varepsilon)\in(0,1)\) such that \[ \|y(\cdot,0)\|_{L^2(\Omega)} \leq C(M,\varepsilon)\left(-\log\left\|\frac{\partial y}{\partial\nu} \right\|_{L^2(\Gamma\times(r,T))}\right)^{-k}, \] where \(\Gamma \subset\partial\Omega\) is a relatively open subset of \(\partial\Omega\), and \(\nu\) is the unit outward normal to \(\partial\Omega\). \end{itemize}}
    0 references
    Carleman estimate
    0 references
    conditional stability
    0 references
    backward heat problem
    0 references
    output least-squares
    0 references
    Tikhonov regularization
    0 references
    finite element method
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references