Conditional stability and numerical reconstruction of initial temperature (Q2518240)
From MaRDI portal
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Conditional stability and numerical reconstruction of initial temperature |
scientific article |
Statements
Conditional stability and numerical reconstruction of initial temperature (English)
0 references
15 January 2009
0 references
The authors consider the stable reconstruction of the initial temperature \[ y(\cdot,0)\in\left\{a\in H^{2\varepsilon}(\Omega)| \|a\|_{H^{2\varepsilon}(\Omega)}\leq M\right\}, \] where \(\varepsilon>0\), \(M>0\) are given fixed numbers, \(\Omega\subset \mathbb{R}^N\) \((N\geq 2)\) is a bounded domain with smooth boundary, entering the heat conduction equation with homogeneous Dirichlet boundary conditions, namely \[ \begin{cases} y_t=-c(x)y+\sum^N_{i,j=1}\frac {\partial} {\partial x_i}\left(a_{ij}(x)\frac{\partial y}{\partial x_j}\right) \quad \text{in }\Omega\times(0,T)\\ y|_{\partial\Omega\times(0,T)}=0 \end{cases} \] where \(c\in L^\infty(\Omega)\), \(c\geq 0\) a.e. in \(\Omega\), \(a_{ij}=a_{ji}\in C^1(\overline\Omega)\) and \[ \alpha_0\xi^{\text{tr}}\cdot\xi\leq\sum^N_{i,j=1}a_{ij}(x)\xi_i\xi_j,\quad\forall x\in \Omega,\xi\in\mathbb{R}^N, \] for some \(\alpha0>0\). Then it is proved that: {\parindent=8mm \begin{itemize}\item[(i)]There exists a constant \(k=k(M,\varepsilon)\in(0,1)\) such that \[ \|y(\cdot,0)\|_{L^2(\Omega)}\leq C(M,\varepsilon)\left(-\log\|y\|_{L^2 (\omega\times(\tau,\tau))}\right)^{-k}, \] for some constant \(C(M, \varepsilon)>0\), where \(\tau\in(0,T)\) is fixed and \(\omega\subset \Omega\) subset of non-zero measure. \item[(ii)]There exists a constant \(k=k(M,\varepsilon)\in(0,1)\) such that \[ \|y(\cdot,0)\|_{L^2(\Omega)} \leq C(M,\varepsilon)\left(-\log\left\|\frac{\partial y}{\partial\nu} \right\|_{L^2(\Gamma\times(r,T))}\right)^{-k}, \] where \(\Gamma \subset\partial\Omega\) is a relatively open subset of \(\partial\Omega\), and \(\nu\) is the unit outward normal to \(\partial\Omega\). \end{itemize}}
0 references
Carleman estimate
0 references
conditional stability
0 references
backward heat problem
0 references
output least-squares
0 references
Tikhonov regularization
0 references
finite element method
0 references