Homogenized coefficients, quasiregular mappings and higher integrability of the gradients in two dimensional conductivity (Q2564717)

From MaRDI portal





scientific article
Language Label Description Also known as
English
Homogenized coefficients, quasiregular mappings and higher integrability of the gradients in two dimensional conductivity
scientific article

    Statements

    Homogenized coefficients, quasiregular mappings and higher integrability of the gradients in two dimensional conductivity (English)
    0 references
    0 references
    11 October 1998
    0 references
    Let \(C=[0,1]^2\subset {\mathbb{R}}^2\), \(R_a(x)\), \(R_b(x)\) be \(C\)-periodic matrices which belong to \(SO(2)\) for all \(x\in {\mathbb{R}}^2\). Let \(C_1\), \(C_2\) be measurable disjoint sets in \(C\), \(C_1\cup C_2=C\), and \(\text{mes } C_1=f\in[0,1]\). Consider the following elliptic problem \((\ast)\) \(\sum_{i,j=1}^2 D_i(\sigma_{ij}(x)D_ju(x))=0\) where \[ \sigma(x)=\chi_{C_1}(x)\left ( \begin{matrix} \lambda_1(x)&0\\ 0&\lambda_2(x)\end{matrix} \right) + \chi_{C_2}(x)\left ( \begin{matrix} \eta_1(x)&0\\ 0&\eta_2(x)\end{matrix} \right), \] the constants \(\lambda_i\), \(\eta_i\) are such that \(\lambda_1\lambda_2>\eta_1\eta_2>0\), \(\lambda_2\geq\lambda_1\), \(\eta_2\geq\eta_1\). Let \(u_\xi\) be a solution of \((\ast)\) with \(C\)-periodic \(Du_{\xi}\) satisfying \(\int_C Du_{\xi}(y)dy=\xi\). The homogenized tensor \(H\) is defined as \(\sum_{h,k}H_{hk}\xi_k\xi_h=\int_C \sum_{ij} \sigma_{ij}(y)D_ju_{\xi}(y)D_iu_{\xi}(y) dy\). Let the eigenvalues \(h_1\) and \(h_2\) of \(H\) coinside: \(h_1=h_2=h\) and \(h_G(f)=h_G(\lambda_1,\lambda_2,\eta_1,\eta_2,f)= \sup_{C_1, \text{mes}(C_1)=f}h\). The author proves that if \(h_G(f)-h_G(0)= h_G(f)-\sqrt{\eta_1\eta_2}\sim a\cdot f^{\alpha}\) \((f\to 0)\) then \(\alpha=\sqrt{\eta_1/\eta_2}\).
    0 references
    elliptic equation
    0 references
    homogenization
    0 references
    quasiconformal mapping
    0 references

    Identifiers