Mean convergence of Lagrange interpolation (Q2565336)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Mean convergence of Lagrange interpolation |
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Mean convergence of Lagrange interpolation |
scientific article |
Statements
Mean convergence of Lagrange interpolation (English)
0 references
12 June 1997
0 references
Let \(W(x)=\exp(-x^2/2)\), \(fW\in L^p(\mathbb{R})\cup L^\infty(\mathbb{R})\), \(1\leq p<\infty\), \(f\) be continuous. Let \(L_n[f]\) denote the Lagrangian interpolation polynomial to \(f\) at the zeros of Hermite polynomials, furthermore let \(\omega_p(f,\delta)\), \(1\leq p\leq\infty\), be the generalized continuity modulus (see \textit{G. Freud} [Dokl. Akad. Nauk SSSR 201,1292-1294 (1971; Zbl 0254.41004)] or [Acta Math. Acad. Sci. Hungar. 24, 363-371 (1973; Zbl 0269.41004)]). The main result is the following estimate: \[ |(f-L_n[f])W|_{L^p(\mathbb{R})}=O(1)\omega_p(f,1,\sqrt n)+O(1)n^{1/(2p)}\log n/\omega_\infty(f,1/\sqrt n). \]
0 references
weighted \(L^ p\)-norm convergence
0 references
Lagrangian interpolation
0 references
Hermite polynomials
0 references