Mean convergence of Lagrange interpolation (Q2565336)

From MaRDI portal





scientific article
Language Label Description Also known as
English
Mean convergence of Lagrange interpolation
scientific article

    Statements

    Mean convergence of Lagrange interpolation (English)
    0 references
    0 references
    12 June 1997
    0 references
    Let \(W(x)=\exp(-x^2/2)\), \(fW\in L^p(\mathbb{R})\cup L^\infty(\mathbb{R})\), \(1\leq p<\infty\), \(f\) be continuous. Let \(L_n[f]\) denote the Lagrangian interpolation polynomial to \(f\) at the zeros of Hermite polynomials, furthermore let \(\omega_p(f,\delta)\), \(1\leq p\leq\infty\), be the generalized continuity modulus (see \textit{G. Freud} [Dokl. Akad. Nauk SSSR 201,1292-1294 (1971; Zbl 0254.41004)] or [Acta Math. Acad. Sci. Hungar. 24, 363-371 (1973; Zbl 0269.41004)]). The main result is the following estimate: \[ |(f-L_n[f])W|_{L^p(\mathbb{R})}=O(1)\omega_p(f,1,\sqrt n)+O(1)n^{1/(2p)}\log n/\omega_\infty(f,1/\sqrt n). \]
    0 references
    weighted \(L^ p\)-norm convergence
    0 references
    Lagrangian interpolation
    0 references
    Hermite polynomials
    0 references

    Identifiers