The generalized Bernstein problem on weighted lacunary polynomial approximation (Q2569475)

From MaRDI portal
scientific article
Language Label Description Also known as
English
The generalized Bernstein problem on weighted lacunary polynomial approximation
scientific article

    Statements

    The generalized Bernstein problem on weighted lacunary polynomial approximation (English)
    0 references
    27 October 2005
    0 references
    The paper deals with the generalized Bernstein problem on weighted lacunary polynomial approximation. Let \(M(\Lambda)\) denote the space of lacunary polynomials which are finite linear combinations of the system \(\{t^\lambda: \lambda\in\Lambda\}\), where \(\Lambda: \{\lambda_n: n= 1,2,\dots\}\) is a sequence of increasing nonnegative integers. Let a weight \(\alpha\) be an even nonnegative function continuous on \(R\) such that \(\lim_{|t|\to\infty}{\alpha(t)\over\log|t|}= \infty\) and \[ L^p_\alpha= \Biggl\{f: \| f\|_{p,\alpha}= \Biggl(\int^\infty_{-\infty}|f(t)^{-\alpha(t)}|^p\,dt\Biggr)^{1/p}<\infty\Biggr\},\quad 1\leq p<\infty. \] The main result of the authors is the following Theorem: Suppose \(\alpha(e^t)\) is a convex function on \(R\). Then \(M(\Lambda)\) is dense in \(L^p_\alpha\) \((1\leq p<\infty)\) if and only if \[ \int^\infty_1\alpha(\exp\{\lambda_1(t)- a\})/t^2\,dt= \int\text{ and }\int^\infty_1\alpha\Biggl(\exp\Biggl\{{\alpha_2(t)- a\over t^2}\Biggr\}\Biggr)\,dt= \infty \] for each \(a\in R\), where \[ \begin{aligned} \lambda_1(r) &= 2\sum_{\lambda_n\leq r,\lambda_n\text{odd}}{1\over\lambda_n},\quad r\geq \lambda_1;\quad \lambda_1(r)= 0,\quad r<\lambda_1,\\ \lambda_2(r) &= 2\sum_{\lambda_n\leq r,\lambda_n\text{even}}{1\over\lambda_n},\quad r\geq \lambda_1;\quad \lambda_2(r)= 0,\quad r< \lambda_1.\end{aligned} \]
    0 references
    Bernstein problem
    0 references
    polynomial approximation
    0 references
    0 references
    0 references
    0 references

    Identifiers