The extension of Montgomery identity via Fink identity with applications (Q2569961)

From MaRDI portal
scientific article
Language Label Description Also known as
English
The extension of Montgomery identity via Fink identity with applications
scientific article

    Statements

    The extension of Montgomery identity via Fink identity with applications (English)
    0 references
    0 references
    0 references
    24 October 2005
    0 references
    Let \(w:[a,b]\rightarrow [ 0,\infty )\) be some probability density function, that is, an integrable function satisfying \(\int_{a}^{b}w(t)dt=1.\) Denote \(W(t)=\int_{a}^{t}w(x)dx\) for \(t\in [ a,b]\), \[ P_{w}(x,t)=\begin{cases} W(t), & a\leq t\leq x, \\ W(t)-1, & x<t\leq b \end{cases} \quad\text{and}\quad k(t,x)=\left\{ \begin{matrix} t-a,\quad a\leq t\leq x\leq b, \\ t-b,\quad a\leq x<t\leq b. \end{matrix} \right. \] Let also \(f:[a,b]\rightarrow \mathbb{R}\) be such that \(f^{(n-1)}\) is an absolutely continuous function on \([a,b]\) for some \(n\geq 2\) and denote \[ F_{j}(x)=\frac{n-j}{j!}\frac{f^{(j-1)}(a)(x-a)^{j}-f^{(j-1)}(b)(x-b)^{j}}{b-a },\quad 1\leq j<n. \] After giving a new extension of the weighted Montgomery identity, the authors prove the following Ostrowski-type inequality: if \(\left| f^{(n)}\right| ^{p}\) is R-integrable for some \(1\leq p\leq \infty ,\) then \[ \begin{multlined} \left| f(x)-\int_{a}^{b}w(t)f(t)dt+\sum_{j=1}^{n-1}\left[ F_{j}(x)-\int_{a}^{b}w(t)F_{j}(t)dt\right] \right| \\ \leq \frac{\left\| f^{(n)}\right\| _{p}}{(n-2)!(b-a)}\left( \int_{a}^{b}\left| \int_{a}^{b}P_{w}(x,t)(t-y)^{n-2}k(y,t)dt\right| ^{q}dy\right) ^{1/q}\end{multlined} \] holds for \(x\in [ a,b],\) where \(1\leq q\leq \infty \) is such that \( 1/p+1/q=1.\)
    0 references
    Ostrowski inequality
    0 references
    Montgomery identity
    0 references

    Identifiers