Global superconvergence analysis of Wilson element for Sobolev and viscoelasticity type equations (Q2574285)

From MaRDI portal
scientific article
Language Label Description Also known as
English
Global superconvergence analysis of Wilson element for Sobolev and viscoelasticity type equations
scientific article

    Statements

    Global superconvergence analysis of Wilson element for Sobolev and viscoelasticity type equations (English)
    0 references
    0 references
    0 references
    0 references
    21 November 2005
    0 references
    The authors consider the following Sobolev type equation \[ \begin{cases} -\Delta u_t-\Delta u=f & \text{ in }\Omega\times(0,T],\\ u=0 & \text{ on }\partial \Omega\times(0,T],\\ u(x,y,0)=V(x,y),\end{cases} \] as well as viscoelasticity type equation \[ \begin{cases} u_{tt}-\Delta u_t-\Delta u=f& \text{ in }\Omega \times(0,T],\\ u=0& \text{ on } \partial\Omega\times(0,T],\\ u(x,y,0)=v(x,y),\;u_t(x,y,0)=\omega(x,y)& \text{ in }\Omega.\end{cases} \] Using the Wilson nonconforming finite element, they solve the above equations. By means of post-processing technique, global superconvergence estimates are obtained on quasi-uniform rectangular meshes. Moreover, the authors present an error correction scheme.
    0 references
    error estimate
    0 references
    post-processing technique
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references