A periodic singularly perturbed problem for the matrix Riccati equation (Q2577310)

From MaRDI portal
scientific article
Language Label Description Also known as
English
A periodic singularly perturbed problem for the matrix Riccati equation
scientific article

    Statements

    A periodic singularly perturbed problem for the matrix Riccati equation (English)
    0 references
    0 references
    0 references
    19 December 2005
    0 references
    The paper deals with the matrix Riccati equation \[ \mu^2\left(\dot\varrho+\varrho A(t,\mu)+A^T(t,\mu)\varrho+Q(t,\mu)\right)= \varrho B(t,\mu)R^{-1}(t,\mu)B^T(t,\mu)\varrho\tag{1} \] with the periodicity condition \[ \varrho (0,\mu)=\varrho (1,\mu)\tag{2} \] with respect to \(t\). Here, \(\mu\) is a positive small parameter, \(t\in \mathbb{R},Q(t,\mu)\) is a symmetric positive semidefinite matrix, and \(R(t,\mu)\) is a symmetric positive definite matrix, \(A(t,\mu)\), \(B(t,\mu)\), \(Q(t,\mu)\), and \(R(t,\mu)\) are 1-periodic matrices in \(t\) and sufficiently smooth with respect to \(t\) and \(\mu\) for \(t\in \mathbb{R}\) and \(\mu\in[0,\mu_0]\), \(0<\mu_0\ll 1\). A 1-periodic solution of problem (1), (2), is found, forming an extended periodic singularly perturbed problem to which the method of reduction to an initial value problem and the method of integral manifolds can be applied.
    0 references
    Singularly perturbed problem
    0 references
    Matrix Riccati equation
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references