The factorization of certain second order polynomial differential operators. (Q2582066)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The factorization of certain second order polynomial differential operators. |
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The factorization of certain second order polynomial differential operators. |
scientific article |
Statements
The factorization of certain second order polynomial differential operators. (English)
0 references
1941
0 references
Verf. beweist, daß der Differentialoperator zweiter Ordnung \[ y = D^2 + a_1(x) D + a_0(x), \] wo \(D = d/dx\) und \(a_1\), \(a_0\) Polynome in \(x\) sind, in das Produkt von zwei Faktoren \((D + b) (D + c)\) erster Ordnung, wo \(b\), \(c\) ebenfalls Polynome sind, zerlegt werden kann, wenn der Ausdruck \(\varDelta = a_1^2 - 4a_0 + 2a_1'\) ein Polynom von geradem Grade ist. Dann gilt \[ y = D^2 + (b + c) D + (bc + c') = (D + \tfrac12a_1 + \tfrac12\big[\sqrt\varDelta\big]) (D +\tfrac12a_1 -\tfrac12\big[\sqrt\varDelta\big]); \] das Symbol \(\big[\sqrt\varDelta\big]\) hat Verf. in einer früheren Arbeit definiert (Amer. math. Monthly 43 (1936), 473-476; F. d. M. \(62_{\text{II}}\), 1267). Beim ungeraden Grade von \(\varDelta\) existiert keine ähnliche Zerlegung.
0 references