Values of Mills' ratio of area to bounding ordinate and of the normal probability integral for large values of the argument. (Q2582545)
From MaRDI portal
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Values of Mills' ratio of area to bounding ordinate and of the normal probability integral for large values of the argument. |
scientific article |
Statements
Values of Mills' ratio of area to bounding ordinate and of the normal probability integral for large values of the argument. (English)
0 references
1941
0 references
Es wird durch einfache Betrachtungen gezeigt, daß die Gaußsche Funktion \(G(x)=e^{-x^2/2}/\sqrt{2\pi }\) für \(x > 0\) der Ungleichung \[ \frac{x}{x^2+1}\leqq \frac{1}{G(x)}\int\limits_{x}G(t)\,dt\leqq \frac{1}{x} \] genügt, und bemerkt, daß diese Grenzen nicht erreicht werden.
0 references