Values of Mills' ratio of area to bounding ordinate and of the normal probability integral for large values of the argument. (Q2582545)

From MaRDI portal
scientific article
Language Label Description Also known as
English
Values of Mills' ratio of area to bounding ordinate and of the normal probability integral for large values of the argument.
scientific article

    Statements

    Values of Mills' ratio of area to bounding ordinate and of the normal probability integral for large values of the argument. (English)
    0 references
    0 references
    1941
    0 references
    Es wird durch einfache Betrachtungen gezeigt, daß die Gaußsche Funktion \(G(x)=e^{-x^2/2}/\sqrt{2\pi }\) für \(x > 0\) der Ungleichung \[ \frac{x}{x^2+1}\leqq \frac{1}{G(x)}\int\limits_{x}G(t)\,dt\leqq \frac{1}{x} \] genügt, und bemerkt, daß diese Grenzen nicht erreicht werden.
    0 references

    Identifiers