A differential equation whose solutions are selfreciprocal functions. (Q2594508)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A differential equation whose solutions are selfreciprocal functions. |
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A differential equation whose solutions are selfreciprocal functions. |
scientific article |
Statements
A differential equation whose solutions are selfreciprocal functions. (English)
0 references
1939
0 references
Bei der Fourier-Transformation \(F (x) =\dfrac{1}{\sqrt {2\pi}}\int\limits _{-\infty}^{\infty} e^{ixt}f(t) dt\) entspricht unter gewissen Bedingungen der Funktion \(\dfrac{dF}{dx}\) die Funktion \(itf(t)\), der Funktion \(x F (x)\) die Funktion \(i\dfrac{df}{dt}\). Wenn \(y = f(x)\) der Differentialgleichung \(\varphi (x,D)y = 0\) genügt, so \(Y = F (x)\) der Gleichung \(\varphi (iD, ix) Y = 0\). Sind beide Gleichungen identisch, so sind Lösungen zu erwarten, die selbst- oder schiefreziprok für die Fourier-Transformation sind. Dies wird an zwei Beispielen verifiziert.
0 references