The mean value of \(|\zeta(\frac12+it)|^4\). (Q2602396)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The mean value of \(|\zeta(\frac12+it)|^4\). |
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The mean value of \(|\zeta(\frac12+it)|^4\). |
scientific article |
Statements
The mean value of \(|\zeta(\frac12+it)|^4\). (English)
0 references
1937
0 references
Der zuerst von \textit{Ingham}, dann vom Verf. bewiesene asymptotische Wert \(T \log^4 T : 2\pi^2\) des Integrals \(\int\limits_0^T |\zeta(\frac12+it|^4dt\) wird hier aus der Identität \[ \begin{multlined} \pi \int\limits_{-\infty}^{+\infty} |\zeta(\tfrac{1}{2}+it)|^4 e^{(2\pi-4\delta)t} (\cosh \pi t)^{-2}dt=4\int\limits_1^\infty|F(v)|^2dv, \\ F(v)=\int\limits_0^\infty \left\{ \frac{1}{\exp(iue^{-i\delta})-1} - \frac{1}{iue^{-i\delta}}\right\} \left\{\frac1{\exp(-iuve^{i\delta})-1}+\frac1{iuve^{i\delta}}\right\}du \end{multlined} \] von neuem hergeleitet. Durch Residuenmethode werden Integrale der Art \[ \int\{\exp(2\pi ize^{-i\delta})-1\}^{-1} \{\exp(-2\pi ikze^{i\delta})-1\}^{-1}dz \] abgeschätzt.
0 references