On the locus of points from which an algebraic variety is projected multiply. (Q2606985)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the locus of points from which an algebraic variety is projected multiply. |
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the locus of points from which an algebraic variety is projected multiply. |
scientific article |
Statements
On the locus of points from which an algebraic variety is projected multiply. (English)
0 references
1936
0 references
Verf. beweist folgenden Satz: Es sei \(V_k\) eine irreduzible algebraische Mannigfaltigkeit in einem linearen \(S_n\); die Punkte derselben, von denen aus \(V_k\) in eine mehrfache Mannigfaltigkeit projiziert wird, bilden eine endliche Anzahl linearer Räume \(S_l\), deren Dimension \(l\geqq 0\) stets \(\neq k\) und \(\leqq k + 1\) ist. \(l = k + 1\) tritt nur ein, wenn \(n= k + 1\) ist; ist \(l < k\), so besteht \(V_k\) aus \(\infty^{k-l}\) Mannigfaltigkeiten \(V_l\), die lauter \(S_{l+1}\) angehören, die durch \(S_l\) gehen.
0 references