Two theorems on ``schlicht'' functions. (Q2607607)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Two theorems on ``schlicht functions. |
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Two theorems on ``schlicht'' functions. |
scientific article |
Statements
Two theorems on ``schlicht'' functions. (English)
0 references
1936
0 references
Es werden die folgenden Sätze bewiesen: \(f (z) =\alpha z+a_2z^2 + \cdots\) sei in \(|z| < 1\) regulär und schlicht. Der Wert \(\frac14\) werde nicht angenommen. Dann ist \[ \displaylines{\rlap{\hskip\parindent 1)}\hfill \left|\dfrac{f'(z)}{1-4f(z)}\right|\leqq\dfrac{1}{1-|z|^2},\quad |\log(1-4f(z))|\leqq 2\log\dfrac{1+|z|}{1-|z|}; \hfill} \] \[ \displaylines{\rlap{\hskip\parindent 2)}\hfill |a_2+2\alpha^2|\leqq 2|\alpha|\sqrt{1-|\alpha|}. \hfill} \] 1) ist eine Verschärfung eines \textit{Littlewood}schen Ergebnisses (Proc. London math Soc. (2) 23 (1925), 481-519 (F. d. M. 51, 247 (JFM 51.0247.*)), Satz 25, S. 507). (IV 4H.)
0 references