Series of hypergeometric type which are infinite in both directions. (Q2607710)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Series of hypergeometric type which are infinite in both directions. |
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Series of hypergeometric type which are infinite in both directions. |
scientific article |
Statements
Series of hypergeometric type which are infinite in both directions. (English)
0 references
1936
0 references
Verf. betrachtet Reihen von der Form \[ {}_pH_p\left[ \begin{matrix} \alpha_1, \alpha_2, \ldots,\alpha_p\\ \varrho_1,\varrho_2,\ldots,\varrho_p\end{matrix}; z\right]= \sum_{n=-\infty}^{+\infty} \frac{(\alpha_1)_n(\alpha_2)_n\ldots(\alpha_p)_n} {(\varrho_1)_n(\varrho_2)_n\ldots(\varrho_p)_n}z^n \] für \(|z| = 1\), die sich als Summe zweier verallgemeinerter hypergeometrischer Reihen \({}_{p+1}F_p\) darstellen lassen. Er zeigt z. B., daß sich bei gewissen Voraussetzungen die ``wellpoised'' \({}_6H_6\) transformieren läßt in eine allgemeine \({}_3H_3\). Analoge Betrachtungen werden für die hypergeometrischen Basisreihen angestellt.
0 references