On a Titchmarsh-Estermann sum. (Q2609177)

From MaRDI portal





scientific article
Language Label Description Also known as
English
On a Titchmarsh-Estermann sum.
scientific article

    Statements

    On a Titchmarsh-Estermann sum. (English)
    0 references
    1936
    0 references
    Verf. beweist für festes positives \(l\): \[ \sum_{n\leqq \xi}{}^{\!\raise0.4ex\hbox{\(\scriptstyle\prime\)}}\,\frac1{\varphi(n)} =E(l)\log\xi+E_1(l)+ O\left(\frac{\log\xi}\xi\right), \] wo in \(\sum^{\prime}\) über zu \(l\) prime \(n\) summiert wird, \[ E(l)=E\prod_{p\mid l} \frac{(p-1)^2}{p^2-p+1},\quad E=\sum_{q=1}^\infty \frac1{q\varphi(q)}=\frac{315\zeta(3)}{2\pi^4} \] und \[ E_1(l) = E(l)\left(C+\sum_{p\mid l} \frac{\log p}{p-1} \sum_p{}^{\!\raise0.4ex\hbox{\(\scriptstyle\prime\)}} \frac{\log p}{p^2-p+1}\right) \] (\(C\) ist die \textit{Euler}sche Konstante; die \(p\) sind Primzahlen).
    0 references
    0 references

    Identifiers