On the summability of a certain class of series of Jacobi polynomials. (Q2611981)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the summability of a certain class of series of Jacobi polynomials. |
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the summability of a certain class of series of Jacobi polynomials. |
scientific article |
Statements
On the summability of a certain class of series of Jacobi polynomials. (English)
0 references
1935
0 references
Die (symmetrischen) \textit{Jacobi}schen Polynome \(X_r(x)\) erhält man, wenn man die Funktion \[ \frac1{(1-2tx+t^2)^{\frac12p}}= \sum_{r=0}^\infty\frac{\varGamma(r+p)}{\varGamma(p)\varGamma(r+1)}X_r(x)t^r \] nach aufsteigenden Potenzen von \(t\) entwickelt. Verf. zeigt, daß die Reihe \[ \sum_{n=1}^\infty n^i \frac{(p+1)(p+3)\ldots(p+2n-1)}{2^n n!}X_n(x) \] (\(i\) positiv, ganz; \(p > - 1\)) im Intervall \(-1<x<+1\) \((C, k)\)-summierbar ist, falls \(k > i - \frac12\).
0 references