An elementary proof of the theorem that the most general matrix commutative with a given \(n\)-rowed square matrix involves at least \(n\) arbitrary parameters. (Q2616617)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: An elementary proof of the theorem that the most general matrix commutative with a given \(n\)-rowed square matrix involves at least \(n\) arbitrary parameters. |
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | An elementary proof of the theorem that the most general matrix commutative with a given \(n\)-rowed square matrix involves at least \(n\) arbitrary parameters. |
scientific article |
Statements
An elementary proof of the theorem that the most general matrix commutative with a given \(n\)-rowed square matrix involves at least \(n\) arbitrary parameters. (English)
0 references
1934
0 references
Der im Titel der Arbeit angegebene Satz wird elementar bewiesen, d. h. nur unter Anwendung rationaler Operationen auf die Koeffizienten der vorgegebenen Matrix. Der Grundgedanke ist folgender: Die Vertauschbarkeitsbedingung führt auf ein System von \(n^2\) linearen Gleichungen; es wird dann gezeigt, daß der Rang dieses Systems \(n^2-n\) nicht überschreiten kann, was offenbar mit der Behauptung gleichwertig ist.
0 references