On the number of \((q + 1)\)-secant \(S_{q-1}\)'s of a certain \(V_k^n\) in an \(S_{qk+q+k+1}\). (Q2623333)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the number of \((q + 1)\)-secant \(S_{q-1}\)'s of a certain \(V_k^n\) in an \(S_{qk+q+k+1}\). |
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the number of \((q + 1)\)-secant \(S_{q-1}\)'s of a certain \(V_k^n\) in an \(S_{qk+q+k+1}\). |
scientific article |
Statements
On the number of \((q + 1)\)-secant \(S_{q-1}\)'s of a certain \(V_k^n\) in an \(S_{qk+q+k+1}\). (English)
0 references
1933
0 references
Verf. betrachtet solche \(k\)-dimensionalen nicht abwickelbaren Mannigfaltigkeiten \(V_k^n\) der Ordnung \(n\) im \(S_{qk+q+k-1}\), die von einer einparametrigen rationalen Schar von \((k-1)\)-dimensionalen Räumen erzeugt werden. Dann ist die Anzahl der \(S_{q-1}\), die \(V_k^n\) in \(q + 1\) Punkten schneiden, gleich \(\binom {n-qk}{q+1}\).
0 references