Lipschitz continuity of \(\alpha\)-harmonic functions (Q2631786)
From MaRDI portal
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Lipschitz continuity of \(\alpha\)-harmonic functions |
scientific article |
Statements
Lipschitz continuity of \(\alpha\)-harmonic functions (English)
0 references
16 May 2019
0 references
Let \(\mathbb{C}\) denote the complex plane. For \(a\in\mathbb{C}\), let \(\mathbb{D}(a;r):=\{z:|z-a|<r\}\) \((r>0)\), \(\mathbb{D}_r:=\mathbb{D}(0;r)\), \(\mathbb{D}:=\mathbb{D}_1\), and let \(\mathbb{T}:=\partial\mathbb{D}\) be the boundary of \(\mathbb{D}\). For \(\alpha>-1\), a complex-valued function \(f\) is said to be \(\alpha\)-harmonic if \(f\) is twice continuously differentiable in \(\mathbb{D}\) and satisfies the \(\alpha\)-harmonic equation: \[ \Delta_\alpha(f(z))=\partial z(1-|z|^2)^{-\alpha}\partial\bar z f(z)=0\,. \] In the paper, the following is proved. Let \(f\) be an \(\alpha\)-harmonic function in \(\mathbb{D}\) with \(\alpha\in(0,\infty)\) and \(f^*(e^{i\theta}):=\lim\limits_{r\to1^-}f(re^{i\theta})\) satisfies the Lipschitz condition \[ |f^*(e^{i\theta})-f^*(e^{i\varphi})|\leq L|e^{i\theta}-e^{i\varphi}|\, \] where \(L\) is a constant. Then, for \(z_1, z_2\in\mathbb{D}\), \[ |f(z_1)-f(z_2)|\leq\mu|z_1-z_2| \] where \[ \mu=L\tau, \tau=\frac{\alpha+2}{3}2^{\alpha+1}\left(1+6\frac{\Gamma(\alpha)}{\Gamma\left(\frac{\alpha+1}2\right)^2}\right) \] and \(\Gamma\) is the Gamma function. Also, a more general result on Lipschitz continuity of \(\alpha\)-harmonic functions is established, i.e., if \(f^*\) satisfies the Lipschitz condition \[ |f^*(e^{i\theta})-f^*(e^{i\varphi})|\leq \omega(|e^{i\theta}-e^{i\varphi}|) \] where \(\omega\) is a fast majorant, then for \(z_1, z_2\in\mathbb{D}\), \[ |f(z_1)-f(z_2)|\leq\mu_2\omega(|z_1-z_2|) \] (\(\mu_2\) is defined in the paper).
0 references
\(\alpha\)-harmonic function
0 references
\(\alpha\)-harmonic equation
0 references
Lipschitz continuity
0 references