Limiting distribution of elliptic homogenization error with periodic diffusion and random potential (Q2634835)

From MaRDI portal
scientific article
Language Label Description Also known as
English
Limiting distribution of elliptic homogenization error with periodic diffusion and random potential
scientific article

    Statements

    Limiting distribution of elliptic homogenization error with periodic diffusion and random potential (English)
    0 references
    0 references
    19 February 2016
    0 references
    This paper deals with the limiting distribution of the elliptic homogenization error with periodic diffusion and random potential. Let \(D\subset \mathbb{R}^{d}\) be an open bounded \(C^{1,1}\) domain and \(u^{\varepsilon}\),\(u\) be the solutions to the problem \[ \begin{cases} -\dfrac{\partial}{\partial x_{i}}\left(a_{ij}\left(\dfrac{x}{\varepsilon}\right)\dfrac{\partial u^{\varepsilon}}{\partial x_{j}}(x,\omega)\right)+q(\dfrac{x}{\varepsilon},\omega)u^{\varepsilon}(x,\omega)=f(x), & x\in D, \\ u^{\varepsilon}(x)=0, & x\in\partial D,\end{cases} \] and to the deterministic homogenized problem \[ \begin{cases} -\bar a_{ij}\dfrac{\partial^2 u}{\partial x_{i}\partial x_{j}}(x)+\bar q u(x)=f(x), & x\in D,\\ u(x)=0, & x\in\partial D,\end{cases} \] respectively. Here, \[ \bar a_{ij}=\int_{[0,1]^{d}}a_{ik}(y)\left(\delta_{kj}+\dfrac{\partial\chi^{k}}{\partial x_{j}}(y)\right)dy, \] \(\chi^{k}\) is the unique solution of the corrector equation, \(\bar q=E(q(0,\omega))\). Suppose that the diffusion coefficients \(A=(a_{ij}):\mathbb{R}^{d}\to \mathbb{R}^{d\times d}\) are smooth, periodic and satisfy the condition of uniform ellipticity, the random potential \(q(x,\omega)\) satisfies the conditions of stationarity, ergodicity and has short-range correlations, \(f\in L^2(D)\) and \(2\leq d\leq7\). Then, there exists \(C>0\), such that \(E\| u^{\varepsilon}-u\|_{L^2}\leq C\varepsilon\| f\|_{L^2}\). Moreover, \[ E\| u^{\varepsilon}-Eu^{\varepsilon}\|_{L^2}\leq C\varepsilon^{2\wedge (d/2)}\| f\|_{L^2} \quad\text{if } d\neq 4 \] and \[ E\| u^{\varepsilon}-Eu^{\varepsilon}\|_{L^2}\leq C\varepsilon^{2}|\log\varepsilon|^{1/2}\| f\|_{L^2}\quad\text{if }d=4. \] Furthermore, for any \(\phi\in L^2(D)\), \(E|(u^{\varepsilon}-Eu^{\varepsilon},\phi)_{L^2}|\leq C\varepsilon^{d/2}\|\phi\|_{L^2}\| f\|_{L^2}\). Let us denote by \(q(x,\omega)=\bar q+\nu(x,\omega)\), \(R(x)=E(\nu(x+y,\omega)\nu(y,\omega))\), \(\sigma^2=\int_{R^{d}}R(x)dx\) and let \(G(x,y)\) be the Green's function of the homogenized problem. Let \(W(y)\) denote the standard \(d\)-parameter Wiener process. Then, for \(d=2,3\), as \(\varepsilon\to0\), \((u^{\varepsilon}-Eu^{\varepsilon})/\varepsilon^{d/2}\) converges in distribution to \[ \sigma\int_{D}G(x,y)u(y)dW(y)\quad\text{ in }L^2(D). \] For \(d=4,5\), as \(\varepsilon\to0\), the above holds as convergence in law in \(H^{-1}(D)\).
    0 references
    elliptic equation in divergence form
    0 references
    highly oscillatory coefficients
    0 references
    elliptic homogenization error
    0 references
    periodic diffusion
    0 references
    random potential
    0 references
    limiting distribution
    0 references
    Green's function
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references