Questions relative to the functional equations of the kind \(A(x)-A(\tau (x))=\phi (x)\) and the Goursat problem for the equation \(u_{xy}=0\) (Q2639266)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Questions relative to the functional equations of the kind \(A(x)-A(\tau (x))=\phi (x)\) and the Goursat problem for the equation \(u_{xy}=0\) |
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Questions relative to the functional equations of the kind \(A(x)-A(\tau (x))=\phi (x)\) and the Goursat problem for the equation \(u_{xy}=0\) |
scientific article |
Statements
Questions relative to the functional equations of the kind \(A(x)-A(\tau (x))=\phi (x)\) and the Goursat problem for the equation \(u_{xy}=0\) (English)
0 references
1990
0 references
Dans le but d'éliminer la condition de monotonie des fonctions \(\alpha\) et \(\beta\), dans le problème de Goursat \(u_{xy}(x,y)=0\), (x,y)\(\in (I,J)\), I, J intervals de R, \(u(x,\alpha (x))=\phi_ 1(x)\), \(x\in I\), \(u(\beta (y),y)=\phi_ 2(y)\), \(y\in J\), l'auteur démontre que ce problème a une seule solution en \(C^ 1\) (ou \(C^ 0)\) en même temps que l'équation fonctionnelle \(A(x)-A(\tau (x))=\phi (x)\), \(A(p')=0\), \(p'\in \gamma\), où \(\tau (x)=\beta (\alpha (x))\), \(\phi (x)=\phi_ 1(x)-\phi_ 2(\alpha (x))\) et \(\gamma\) est l'ensemble des points fixes de \(\phi\).
0 references
monotonicity condition
0 references
unique solution
0 references
Goursat problem
0 references
0 references