Zur Konvergenzbeschleunigung von Reihen mit logarithmischer Konvergenz. (Acceleration of the convergence of logarithmically convergent series) (Q2639588)

From MaRDI portal





scientific article
Language Label Description Also known as
English
Zur Konvergenzbeschleunigung von Reihen mit logarithmischer Konvergenz. (Acceleration of the convergence of logarithmically convergent series)
scientific article

    Statements

    Zur Konvergenzbeschleunigung von Reihen mit logarithmischer Konvergenz. (Acceleration of the convergence of logarithmically convergent series) (English)
    0 references
    0 references
    1990
    0 references
    This paper discusses series \(\sum a_ n\) when \(a_ n=(n^{- \alpha}\ln^{\beta}n)(\gamma_ 0+O(1/n))\) and when \(a_ n=(n^{- 1}\ln^{\beta}n)(\gamma_ 0+\gamma_ 1n^{-1}+O(n^{-2})),\) where Re \(\alpha\) \(>1\), \(\beta\neq 0\) in the first case, Re \(\beta\) \(>1\) in the second case. The author obtains asymptotic expressions for the remainders and then applies a convergence accelerating process. This procedure can be more effective than, for example, the use of the Euler-Maclaurin formula.
    0 references
    logarithmically convergent series
    0 references
    asymptotic expressions
    0 references
    convergence accelerating process
    0 references
    Euler-Maclaurin formula
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references