Ein quantitatives Resultat über Faktorisierungen verschiedener Länge in algebraischen Zahlkörpern. (A quantitative result on factorizations of different length in algebraic number fields) (Q2640647)

From MaRDI portal
scientific article
Language Label Description Also known as
English
Ein quantitatives Resultat über Faktorisierungen verschiedener Länge in algebraischen Zahlkörpern. (A quantitative result on factorizations of different length in algebraic number fields)
scientific article

    Statements

    Ein quantitatives Resultat über Faktorisierungen verschiedener Länge in algebraischen Zahlkörpern. (A quantitative result on factorizations of different length in algebraic number fields) (English)
    0 references
    0 references
    1990
    0 references
    Let R denote the ring of algebraic integers in an algebraic number field K with the class group G of order \(h\geq 3\). For a natural \(m\geq 1\) and real \(x\geq 1\) let \(G_ m(x)\) \((\bar G_ m(x))\) denote the number of principal ideals aR such that \(N(aR)\leq x\) and a has at most m (exactly m resp.) factorizations into irreducibles of distinct lengths. It is known that \[ G_ m(x)=(C+o(1))x(\log x)^{-\eta (G,m)}\quad (\log \log x)^{\psi (G,m)}, \] \[ \bar G_ m(x)=(\bar C+o(1))x(\log x)^{-{\bar \eta}(G,m)}\quad (\log \log x)^{{\bar \psi}(G,m)}, \] the constants \(C\), \(\bar C\), \(\eta(G,m)\), \({\bar \eta}(G,m)\), \(\psi(G,m)\) and \({\bar\psi}(G,m)\) being positive. The author's main results give explicit (combinatorial) formulae for the exponents in the above asymptotics.
    0 references
    length of factorization
    0 references
    asymptotic formula
    0 references
    ring of algebraic integers
    0 references
    number of principal ideals
    0 references
    factorizations into irreducibles of distinct lengths
    0 references

    Identifiers