On the mean value of the complete trigonometric sums with Dirichlet characters (Q2644366)

From MaRDI portal





scientific article
Language Label Description Also known as
English
On the mean value of the complete trigonometric sums with Dirichlet characters
scientific article

    Statements

    On the mean value of the complete trigonometric sums with Dirichlet characters (English)
    0 references
    0 references
    31 August 2007
    0 references
    Let \(q \geq 3\) be an integer, and let \(k\) be a positive integer. When \(\chi\) is a Dirichlet character modulo \(q\) and \(c_0, \dots, c_{k-1}, m \in {\mathbb Z}\), define \[ S_{\chi}(q, m, {\mathbf c}) = \sum_{a=1}^q \chi(a) e\left(\frac{ma^k+c_{k-1}a^{k-1}+ \cdots + c_0}{q}\right), \] where \(e(y)=e^{2\pi i y}\). The author proves that whenever \((k, q\varphi(q))=1\) one has \[ \sum_{m=1}^q \sum_{\chi \bmod q} | S_{\chi}(q,m,{\mathbf c})| ^4 = \varphi^2(q) q^2 \prod_{p^{\alpha} \parallel q} \left(\alpha+1-\frac{\alpha+2}{p}\right). \] The proof is a fairly straightforward calculation based on the orthogonality of Dirichlet characters, a quasi-multiplicative property for \(S_{\chi}(q,m,{\mathbf c})\), and counting solutions of the congruence \((a^k-1)(b^k-1) \equiv 0 \pmod{p^\alpha}\) with \(a\) and \(b\) not divisible by \(p\).
    0 references
    exponential sums
    0 references
    Dirichlet characters
    0 references
    0 references
    0 references

    Identifiers