On a theorem of Beurling and Kaplansky (Q2651757)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On a theorem of Beurling and Kaplansky |
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On a theorem of Beurling and Kaplansky |
scientific article |
Statements
On a theorem of Beurling and Kaplansky (English)
0 references
1954
0 references
Nouvelle démonstration du Théorème: Si \(I\) est un idéal fermé de l'algèbre \(L_1(A)\) d'un groupe abélien localement compact \(A\), si le spectre \(S(f)\) d'une fonction \(f\) contient le spectre \(S(I)\) et si l'intersection des frontières de \(S(f)\) et de \(S(I)\) est un ensemble réductible (pas de sous-ensembles parfaits non vides), alors \(f\in I\).
0 references
closed ideal
0 references
algebra of locally compact abelian group
0 references
spectrum of function
0 references