Quasilength, latent regular sequences, and content of local cohomology (Q2654060)

From MaRDI portal
scientific article
Language Label Description Also known as
English
Quasilength, latent regular sequences, and content of local cohomology
scientific article

    Statements

    Quasilength, latent regular sequences, and content of local cohomology (English)
    0 references
    0 references
    0 references
    15 January 2010
    0 references
    Let \(d\in \mathbb{N}\) be an integer and \(\underline{x}=x_1,\ldots , x_d\) a sequence of elements of a commutative ring \(R\). Let \(I=(\underline{x})R\) and \(M\) a finitely generated \(R\)-module that is annihilated by a power of \(I\). The authors introduced the notion of \(I\)-quasilength of \(M\), \(\mathcal{L}_I^R(M)\), as the length of a shortest filtration of \(M\) with factors that are homomorphic images of \(R/I\). If \(I\) is maximal, then \(\mathcal{L}_I^R(M)\) coincides with the usual length of \(M\). For any \(d\)-tuple \(t=(t_1,\dots ,t_d)\in \mathbb{N}^d\), let \(I_{\underline{t}}:=(x_1^{t_1},\dots , x_d^{t_d})R\) and \[ (I_{\underline{t}}M)^{\text{lim}}:=\bigcup_{\underline{k}=(k_1,\dots ,k_d)\in \mathbb{N}^d}(I_{\underline{t}+\underline{k}}M:_Mx_1^{k_1}\dots x_d^{k_d}). \] Then the authors defined the notions \(\underline{h}_{\underline{x}}^d(M)\) and \(h_{\underline{x}}^d(M)\), respectively, by \[ \underline{h}_{\underline{x}}^d(M):={\text{lim}}_{s\to \infty}\inf \{\frac{\mathcal{L}_I^R(M/(I_{\underline{t}}M)^{\text{lim}})}{t_1\ldots t_d}|t=(t_1,\dots ,t_d)\in \mathbb{N}^d \;\;\text{and every} \;\;t_i\geq s \} \] and \[ h_{\underline{x}}^d(M):={\text{lim}}_{s\to \infty}\inf \{\frac{\mathcal{L}_I^R(M/I_{\underline{t}}M)}{t_1\ldots t_d}|t=(t_1,\ldots ,t_d)\in \mathbb{N}^d \;\;\text{and every} \;\;t_i\geq s \}. \] Let \(\nu(M)\) denote the least number of generators of \(M\). It follows that \[ 0\leq \underline{h}_{\underline{x}}^d(M)\leq h_{\underline{x}}^d(M)\leq \nu(M). \] In particular, this implies that \[ 0\leq \underline{h}_{\underline{x}}^d(R)\leq h_{\underline{x}}^d(R)\leq 1. \] They authors show that the condition \(h_{\underline{x}}^d(R)=1\) depends only on \(d\) and \(I\), and not on specific choice of \(d\) generators for \(I\). Also, they proved that \(h_{\underline{x}}^d(R)=1\) if and only if \(\underline{h}_{\underline{x}}^d(R)=1\). The authors conjectured that: a) \(\underline{h}_{\underline{x}}^d(R)=h_{\underline{x}}^d(R)\), b) \(h_{\underline{x}}^d(R)\) is either 0 or 1; and c) if \(R\) is local and \(\underline{x}\) forms a system of parameters in \(R\), then \(\underline{h}_{\underline{x}}^d(R)=1\). Regarding these conjectures, the authors established the following results. 1) If \(R\) has positive prime characteristic, then \(\underline{h}_{\underline{x}}^d(R)=h_{\underline{x}}^d(R)\) and \(h_{\underline{x}}^d(R)\) is either 0 or 1. 2) Assume that \(R\) is local and \(\underline{x}\) forms a system of parameters in \(R\). If either \(R\) is equicharacteristic or \(R\) is reduced and equidimensional, then \(\underline{h}_{\underline{x}}^d(R)=h_{\underline{x}}^d(R)\). 3) The conjecture \(c)\) implies the direct summand conjecture.
    0 references
    regular sequenses
    0 references
    local cohomology
    0 references
    big Cohen-Macaulay
    0 references
    qusilength
    0 references
    content
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references

    Identifiers