Cotorsion pairs associated with Auslander categories (Q2655783)

From MaRDI portal
scientific article
Language Label Description Also known as
English
Cotorsion pairs associated with Auslander categories
scientific article

    Statements

    Cotorsion pairs associated with Auslander categories (English)
    0 references
    0 references
    0 references
    26 January 2010
    0 references
    \textit{L. W.\ Christensen} [Trans.\ Am.\ Math.\ Soc.\ 353, 1839--1883 (2001)] extended the notion of semidualizing modules to complexes. By \textit{L. L.\ Avramov} and \textit{H.-B.\ Foxby} [Proc.\ Lond. Math.\ Soc., III. Ser. 75, No. 2, 241--270 (1997; Zbl 0901.13011)], and \textit{L. W.\ Christensen} [Trans.\ Am.\ Math.\ Soc.\ 353, No. 5, 1839--1883 (2001; Zbl 0969.13006)] a semidualizing module or complex \(C\) (over a commutative noetherian ring) gives rise to Auslander class \(\mathcal{A}_C\) and Bass class \(\mathcal{B}_C\). The authors concentrate with what covering and enveloping properties \(\mathcal{A}_C\) and \(\mathcal{B}_C\) possess. In particular, the Bass class determined by a semidualizing module is preenveloping.
    0 references
    Auslander category (class)
    0 references
    Bass class
    0 references
    cotorsion pair
    0 references
    Kaplansky class
    0 references
    semidualizing module
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references