Linear independence result for \(p\)-adic \(L\)-values (Q2657464)
From MaRDI portal
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Linear independence result for \(p\)-adic \(L\)-values |
scientific article |
Statements
Linear independence result for \(p\)-adic \(L\)-values (English)
0 references
12 March 2021
0 references
Let \(\mathbb C_p\) be the completion of a fix algebraic closure of the field of \(p\)-adic numbers \(\mathbb Q_P\). Let \(\overline{\mathbb Q}_p\) be the algebraic closure of \(\mathbb Q\) in \(\mathbb C_p\). Let \(\mathbb K\subseteq\overline{\mathbb Q}_p\) be a number field. For a Dirichlet character \(\chi\), let us write \(\mathbb Q(\chi)\subseteq\overline{\mathbb Q}\) for the smallest subfield of \(\overline{\mathbb Q}\) containing all values \(\chi\). Then the author proves that for every \(\varepsilon >0\) and a sufficiently large positive integer \(s\) we have for a \(p\)-adic \(L\)-function \[\dim_{\mathbb K}(\mathbb K+\sum_{i=2}^s L_p(i,\chi \omega^{1-i})\mathbb K)\geq \frac{(1-\varepsilon)\log s}{2[\mathbb K:\mathbb Q](1+\log 2)},\] where \(\omega\) is the Teichmüller character. The proof makes use of special integrals.
0 references
\(p\)-adic \(L\)-functions
0 references
irrationality
0 references
linear independence criterion
0 references
Volkenborn integration
0 references
0 references
0 references
0 references