Nonsingular rational solutions to integrable models (Q2658241)

From MaRDI portal
scientific article
Language Label Description Also known as
English
Nonsingular rational solutions to integrable models
scientific article

    Statements

    Nonsingular rational solutions to integrable models (English)
    0 references
    0 references
    0 references
    0 references
    0 references
    19 March 2021
    0 references
    The paper is devoted to generate lump solutions of the following equations: (1) The KP equation: \[\left(u_{t}+6 u u_{x}+u_{x x x}\right)_{x}+\alpha u_{y y}=0, \] (2) The DJKM equation:\[ w_{x x x x y}+2 w_{x x x} w_{y}+4 w_{x x y} w_{x}+6 w_{x y} w_{x x}-w_{y y y}-2 w_{x x t}=0, \] (3) The elliptic Toda equation: \[ \left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)\left(\log u_{n}\right)=u_{n+1}-2 u_{n}+u_{n-1}, \] (4) The BKP equation: \[ \left(u_{t}+15 u u_{3 x}+15 u_{x}^{3}-15 u_{x} \mid u_{y}+u_{5 x}\right)_{x}+5 u_{3 x, y}-5 u_{y y}=0, \] (5) The Novikov-Veselov equation \[ 2 u_{t}+u_{x x x}+u_{y y y}+3\left(u \partial_{y}^{-1} u_{x}\right)_{x}+3\left(u \partial_{x}^{-1} u_{y}\right)_{y}=0, \] (6) The negative flow of BKP equation: \[ u_{y t}-u_{x x x y}-3\left(u_{x} u_{y}\right)_{x}+3 u_{x x}=0. \] To find lump solutions the authors develop a technique via Bäcklund transformations and nonlinear superposition formulae in the framework of Hirota's bilinear formalism. For the entire collection see [Zbl 1459.00016].
    0 references
    lump solution
    0 references
    Bäcklund transformation
    0 references
    nonlinear superposition formulae
    0 references

    Identifiers