Logarithmic integrals, zeta values, and tiered binomial coefficients (Q2664019)

From MaRDI portal
scientific article
Language Label Description Also known as
English
Logarithmic integrals, zeta values, and tiered binomial coefficients
scientific article

    Statements

    Logarithmic integrals, zeta values, and tiered binomial coefficients (English)
    0 references
    0 references
    0 references
    20 April 2021
    0 references
    In this paper, the authors give an explicit expression of logarithmic integrals of the form \[ \int_0^1x^i\mathrm{ln}^n(x)\mathrm{ln}^m(1-x)dx. \] Roughly speaking, they show that \[ \frac{(-1)^{n+m}}{n!m!}\int^1_0x^i \mathrm{ln}^n(x)\mathrm{ln}^m(1-x)dx=(n,m)_i-\sum_{\substack{1\leq a\leq n\\ 1\leq b\leq m}}(n-a,m-b)_i\cdot \zeta(a+1,\{1\}_b), \] where the values \((n,m)_i\) are rational numbers which are related binomial coefficients and truncated multiple zeta values. As an application, they also reprove that the moments of the limit law are rational polynomials in the zeta values.
    0 references
    0 references
    multiple zeta values
    0 references
    logarithmic integrals
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references

    Identifiers