Unitarily invariant norm inequalities for positive semidefinite matrices (Q2666918)

From MaRDI portal
scientific article
Language Label Description Also known as
English
Unitarily invariant norm inequalities for positive semidefinite matrices
scientific article

    Statements

    Unitarily invariant norm inequalities for positive semidefinite matrices (English)
    0 references
    0 references
    0 references
    0 references
    23 November 2021
    0 references
    Let \(M_n(\mathbb{C})\) denote the space of all \(n\times n\) complex matrices. \textit{F. Kittaneh} [J. Funct. Anal. 250, No. 1, 132--143 (2007; Zbl 1131.47009)] proved that if \(A, B, X \in M_n(\mathbb{C})\) such that \(A, B\) are positive semidefinite, then \[ \|| AX-XB |\| \le \Vert X\Vert~\|| A \oplus B |\|, \] where \(\|| \cdot |\|\) denotes the unitarily invariant norm on \(M_n(\mathbb{C})\). This result is an improvement of the inequality by \textit{X. Zhan} [SIAM J. Matrix Anal. Appl. 22, No. 3, 819--823 (2000; Zbl 0985.15016)]. In this paper, the authors continue to improve the above inequality and show the following commutator inequality, for \(X, Y \in M_n(\mathbb{C})\): \[ \lVert XY-YX\rVert \le \Vert Y \Vert \Vert X \Vert + \frac{1}{2} \Vert X^*Y - YX^*\Vert. \] Additionally, \textit{O. Hirzallah} and \textit{F. Kittaneh} [Linear Algebra Appl. 432, No. 5, 1322--1336 (2010; Zbl 1188.47018)] proved another interesting singular values' inequality, that is, \[ s_j(X+Y) \le 2s_j(X \oplus Y), \] for \(X, Y \in M_n(\mathbb{C})\) and \(j = 1, \dots, n.\) In this paper, the authors generalize this inequality. Furthermore, they prove an inequality for nonnegative concave functions of \(A^{1/2}XB^{1/2}+B^{1/2}YA^{1/2}\).
    0 references
    0 references
    positive semidefinite matrix
    0 references
    singular value
    0 references
    unitarily invariant norm
    0 references
    commutator
    0 references
    concave function
    0 references
    inequality
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references