The large sieve with square moduli in function fields (Q2668930)
From MaRDI portal
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The large sieve with square moduli in function fields |
scientific article |
Statements
The large sieve with square moduli in function fields (English)
0 references
9 March 2022
0 references
Let \(q\) be an odd prime power, \(\mathbb{F}_q\) be a fixed finite field with \(q\) elements of characteristic \(p\) (prime), \(\mathrm{Tr}: \mathbb{F}_q\to\mathbb{F}_p\) be the trace map, and \(\mathbb{F}_q(t)_\infty\) be the completion of \(\mathbb{F}_q(t)\) at \(\infty\). We define the non-trivial additive character \(E:\mathbb{F}_q\to\mathbb{C}^\times\) by \[ E(x)=\exp\left(\frac{2\pi i}{p}\mathrm{Tr}(x)\right), \] and afterwards, the map \(e:\mathbb{F}_q(t)_\infty\to\mathbb{C}^\times\) by \[ e\left(\sum_{k=-\infty}^n a_kt^k\right)=E(a_{-1}). \] The aim of the paper under review is to find upper and lower bounds for the large sieve with square moduli in function fields, precisely the quantity \[ \sum_{\substack{f\in\mathbb{F}_q[t]\\ \deg f\leq Q}}\,\sum_{\substack{r\,\mathrm{mod}\,f^2\\ \gcd(r,f)=1}}\Big|\sum_{\substack{g\in\mathbb{F}_q[t]\\ \deg g\leq N}}a_g\,e\Big(g.\frac{r}{f^2}\Big)\Big|^2, \] where \(N\) and \(Q\) are positive integers with \(2Q\leq N\leq 4Q\), and \(a_g\in\mathbb{C}\) with \(g\in\mathbb{F}[t]\).
0 references
large sieve
0 references
square moduli
0 references
function fields
0 references
character sums
0 references
exponential integrals
0 references
Farey fractions
0 references