The large sieve with square moduli in function fields (Q2668930)

From MaRDI portal
scientific article
Language Label Description Also known as
English
The large sieve with square moduli in function fields
scientific article

    Statements

    The large sieve with square moduli in function fields (English)
    0 references
    0 references
    0 references
    9 March 2022
    0 references
    Let \(q\) be an odd prime power, \(\mathbb{F}_q\) be a fixed finite field with \(q\) elements of characteristic \(p\) (prime), \(\mathrm{Tr}: \mathbb{F}_q\to\mathbb{F}_p\) be the trace map, and \(\mathbb{F}_q(t)_\infty\) be the completion of \(\mathbb{F}_q(t)\) at \(\infty\). We define the non-trivial additive character \(E:\mathbb{F}_q\to\mathbb{C}^\times\) by \[ E(x)=\exp\left(\frac{2\pi i}{p}\mathrm{Tr}(x)\right), \] and afterwards, the map \(e:\mathbb{F}_q(t)_\infty\to\mathbb{C}^\times\) by \[ e\left(\sum_{k=-\infty}^n a_kt^k\right)=E(a_{-1}). \] The aim of the paper under review is to find upper and lower bounds for the large sieve with square moduli in function fields, precisely the quantity \[ \sum_{\substack{f\in\mathbb{F}_q[t]\\ \deg f\leq Q}}\,\sum_{\substack{r\,\mathrm{mod}\,f^2\\ \gcd(r,f)=1}}\Big|\sum_{\substack{g\in\mathbb{F}_q[t]\\ \deg g\leq N}}a_g\,e\Big(g.\frac{r}{f^2}\Big)\Big|^2, \] where \(N\) and \(Q\) are positive integers with \(2Q\leq N\leq 4Q\), and \(a_g\in\mathbb{C}\) with \(g\in\mathbb{F}[t]\).
    0 references
    0 references
    large sieve
    0 references
    square moduli
    0 references
    function fields
    0 references
    character sums
    0 references
    exponential integrals
    0 references
    Farey fractions
    0 references

    Identifiers