On the parametrization of a certain algebraic curve of genus 2 (Q268090)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the parametrization of a certain algebraic curve of genus 2 |
scientific article; zbMATH DE number 6568790
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the parametrization of a certain algebraic curve of genus 2 |
scientific article; zbMATH DE number 6568790 |
Statements
On the parametrization of a certain algebraic curve of genus 2 (English)
0 references
14 April 2016
0 references
The authors study the parametrization \((w(t),z(t))\) of the algebraic curve in \(\mathbb C^2\) given by \[ w^3-3A(z)w-2B(z)=0,\eqno{(1)} \] where \[ A(z)={1\over z^2-1},\;B(z)={z\over (z^2-a^2)(z^2-1)},\;a\in (0,1).\eqno{(2)} \] The main result is the following. Theorem. The curve defined by (1), (2) can be parametrized by \[ \left\{\begin{matrix} w=-iC\left(\varepsilon t+{1\over \varepsilon t}\right),\cr z={a_1+it^3a_2\over 1-t^6},\cr\end{matrix}\right.\;\varepsilon^3=1, \quad C={a_2+it^3a_1\over (1-a^2)(1+t^6)}, \] where \[ a_1=\sqrt{a 2-(1-a^2)t^6},\quad a_2=\sqrt{(1-a^2)-a^2t^6}. \] As a corollary they construct a closed contour \(\gamma\) on a three-sheeted Riemannian surface of genus 2 for which \[ \operatorname{Re}\oint_{\gamma}\,wdz>0,\;a\in\left(0,{1\over \sqrt{2}}\right). \]
0 references
Riemann surfaces
0 references
parametrization of complex algebraic curves
0 references
abelian integrals
0 references
Hermite-Padé approximants
0 references
0 references