Leibniz bialgebras, relative Rota-Baxter operators, and the classical Leibniz Yang-Baxter equation (Q2697943)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Leibniz bialgebras, relative Rota-Baxter operators, and the classical Leibniz Yang-Baxter equation |
scientific article; zbMATH DE number 7674619
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Leibniz bialgebras, relative Rota-Baxter operators, and the classical Leibniz Yang-Baxter equation |
scientific article; zbMATH DE number 7674619 |
Statements
Leibniz bialgebras, relative Rota-Baxter operators, and the classical Leibniz Yang-Baxter equation (English)
0 references
14 April 2023
0 references
Summary: In this paper, first we introduce the notion of a Leibniz bialgebra and show that matched pairs of Leibniz algebras, Manin triples of Leibniz algebras, and Leibniz bialgebras are equivalent. Then we introduce the notion of a (relative) Rota-Baxter operator on a Leibniz algebra and construct the graded Lie algebra that characterizes relative Rota-Baxter operators as Maurer-Cartan elements. By these structures and the twisting theory of twilled Leibniz algebras, we further define the classical Leibniz Yang-Baxter equation, classical Leibniz \(r\)-matrices, and triangular Leibniz bialgebras. Finally, we construct solutions of the classical Leibniz Yang-Baxter equation using relative Rota-Baxter operators and Leibniz-dendriform algebras.
0 references
Leibniz bialgebra
0 references
Rota-Baxter operator
0 references
twilled Leibniz algebra
0 references
classical Leibniz Yang-Baxter equation
0 references
0 references
0 references
0 references