On the complexity of stochastic integration (Q2701558)

From MaRDI portal





scientific article
Language Label Description Also known as
English
On the complexity of stochastic integration
scientific article

    Statements

    On the complexity of stochastic integration (English)
    0 references
    19 February 2001
    0 references
    approximation of Itô integral
    0 references
    complexity
    0 references
    optimal algorithm
    0 references
    0 references
    0 references
    Fix \(T,L,K>0\), and consider functions \(f\) of \([0,T]\times \mathbb{R}\) into \(\mathbb{R}\) such that \(\partial_1f\) and \(\partial^2_2f\) are continuous, and bounded by \(L,K\), respectively. Set \(I(f):= \int^T_0 f(t,B_t)dB_t\), \(B_t\) being a Brownian motion, and for \(n\in\mathbb{N}^*\): NEWLINE\[NEWLINE\begin{multlined} A_n(f):= \sum^n_{j=1} f\bigl(((j-1)/n) T,B_{((j-1)/n)T} \bigr)\times \bigl(B_{(j/n)T}- B_{((j-1)/n)T}\bigr) \\ +{1\over 2}\sum^n_{j=1} \partial_2f\bigl(((j-1)/n)T,B_{((j-1)/n)T}\bigr) \times \Bigl[(B_{(j/n)T}-B_{((j-1)/n)T})^2 -{T\over n}\Bigr]. \end{multlined}NEWLINE\]NEWLINE Then NEWLINE\[NEWLINE\bigl \|I(f)-A_n(f) \bigr\|_2\leq {T^{3/2}\over n}\times \sqrt{{2\over 3} L^2+K^2},NEWLINE\]NEWLINE and this estimate is sharp, up to some multiplicative constant.
    0 references

    Identifiers