An Ostrowski's type inequality for a random variable whose probability density function belongs to \(L_\infty[a,b]\) (Q2702970)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: An Ostrowski's type inequality for a random variable whose probability density function belongs to \(L_\infty[a,b]\) |
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | An Ostrowski's type inequality for a random variable whose probability density function belongs to \(L_\infty[a,b]\) |
scientific article |
Statements
7 December 2001
0 references
Ostrowski type inequalities
0 references
expectations
0 references
Beta random variable
0 references
An Ostrowski's type inequality for a random variable whose probability density function belongs to \(L_\infty[a,b]\) (English)
0 references
Let \(X\) be a random variable with probability density function \(f\in L_{\infty }[a,b]\) and expectation \(E(X)\). The authors prove the following Ostrowski's type inequality NEWLINE\[NEWLINE \left|\Pr (X\leq x)-\frac{b-E(X)}{b-a}\right|\leq \left[ \frac{1}{4}+\frac{ \left( x-\frac{a+b}{2}\right) ^{2}}{(b-a)^{2}}\right] (b-a)\left\|f\right\|_{\infty },\forall x\in [a,b], NEWLINE\]NEWLINE where \(\|f\|_\infty= t\in [a,b]\), \(\sup f(t)<\infty \). The constant \(1/4\) is sharp. An application for a Beta random variable is also given.
0 references