Axiomatic theory of spectrum. III: Semiregularities (Q2703083)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Axiomatic theory of spectrum. III: Semiregularities |
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Axiomatic theory of spectrum. III: Semiregularities |
scientific article |
Statements
17 January 2002
0 references
spectral mapping
0 references
essential spectrum
0 references
upper and lowr semiregularities
0 references
spectral mapping theorems
0 references
0.7821142
0 references
0 references
0.7300876
0 references
0.7089661
0 references
0.6975821
0 references
0.6759054
0 references
0.66917855
0 references
0.6681471
0 references
Axiomatic theory of spectrum. III: Semiregularities (English)
0 references
[For part II see \textit{M. Mbekhta} and the author, ibid. 119, No. 2, 129-147 (1996; Zbl 0857.47002).]NEWLINENEWLINENEWLINEThe author defines the notions of upper and lower semiregularities in Banach algebra and proves one way spectral mapping theorems.NEWLINENEWLINENEWLINEDefinition 1: Let \({\mathfrak R}\) be a non-empty subset of a Banach algebra \(A\). Then \({\mathfrak R}\) is called a lower semiregular ifNEWLINENEWLINENEWLINE(i) \(a\in A\), \(n\in\aleph\), \(a^n\in{\mathfrak R}\Rightarrow a\in{\mathfrak R}\),NEWLINENEWLINENEWLINE(ii) if \(a\), \(b\), \(c\), \(d\) are mutually commuting elements of \(A\) satisfying \(ac+ bd=1_A\) and \(ab\in{\mathfrak R}\) then \(a,b\in{\mathfrak R}\).NEWLINENEWLINENEWLINEThe corresponding spectrum \(\sigma_{{\mathfrak R}}\) is defined by \(\sigma_{{\mathfrak R}}= \{\lambda\in C: a-\lambda\not\in{\mathfrak R}\}\). Regarding this notion the author proves the following main result:NEWLINENEWLINENEWLINETheorem 1: Let \({\mathfrak R}\subset A\) be a lower semiregularity and \(a\in A\). Then \(f(\sigma_{{\mathfrak R}}(a))\subset \sigma_{{\mathfrak R}}(f(a))\) for each locally non-constant function \(f\) analytic on a neighbourhood of \(\sigma(a)\).NEWLINENEWLINENEWLINEA similar definition and result is given for the notion of upper semiregularity. The article contains many more results.
0 references