On the estimation of the convergence rate of the difference scheme in the eigenvalue problems (Q2703345)

From MaRDI portal





scientific article
Language Label Description Also known as
English
On the estimation of the convergence rate of the difference scheme in the eigenvalue problems
scientific article

    Statements

    1 March 2001
    0 references
    difference scheme
    0 references
    eigenvalue problems
    0 references
    elliptic operator
    0 references
    eigenfunctions
    0 references
    convergence
    0 references
    On the estimation of the convergence rate of the difference scheme in the eigenvalue problems (English)
    0 references
    In the domain \(\Omega=\{x=(x_1,x_2): 0<x_{i}<l_{i}, i=1,2\}\) with boundary \(\Gamma\) the author considers the eigenvalue problem for the elliptic operator NEWLINE\[NEWLINE-\sum_{i,j=1}^{2}{\partial\over\partial x_{i}} \Biggl( K_{ij}(x){\partial u\over\partial x_{j}} \Biggr)= \lambda u, \quad x\in\Omega,\;u(x)=0,\;x\in \Gamma,NEWLINE\]NEWLINE where \(K_{ij}(x)\in W_{\infty}^{2}(\Omega)\), \(K_{ij}(x)=K_{ji}(x)\), and there are constants \(\theta_1\geq\theta_2>0\) such that for all \(x\in\Omega\) and \(\xi_1,\xi_2, \xi_1^2+\xi_2^2 \neq 0\) the following condition is fulfilled NEWLINE\[NEWLINE\theta_2(\xi_1^2+\xi_2^2) \leq\sum_{i,j=1}^{2}K_{ij}(x)\xi_{i}\xi_{j}\leq \theta_1(\xi_1^2+\xi_2^2).NEWLINE\]NEWLINE Using operators of the exact difference scheme a finite difference method of second order accuracy for eigenfunctions is constructed under the condition that eigenfunctions of the given eigenvalue problem belong to space \(W_{2}^3(\Omega)\).
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references