Multiple solutions to some singular nonlinear Schrödinger equations (Q2703364)

From MaRDI portal





scientific article
Language Label Description Also known as
English
Multiple solutions to some singular nonlinear Schrödinger equations
scientific article

    Statements

    4 March 2001
    0 references
    semilinear elliptic equations
    0 references
    Ljusternik-Schnirelman category
    0 references
    existence
    0 references
    multiplicity
    0 references
    0 references
    Multiple solutions to some singular nonlinear Schrödinger equations (English)
    0 references
    The paper deals with existence and multiplicity results for the semilinear elliptic problem NEWLINE\[NEWLINE -h^2 \Delta u+V_\varepsilon (x)u=|u|^{p-2}u\quad \text{ in } {\mathbb R}^N,\qquad \lim_{|x|\to\infty}u(x)=0 NEWLINE\]NEWLINE provided \(h\) small enough. Here \(V_\varepsilon (x)=V(x)-\varepsilon (h)W(x),\) \(0<\inf_{{\mathbb R}^N}V<\liminf_{|x|\to\infty}V(x),\) \(\varepsilon (h)=O(h^2)\) as \(h\to 0\) and \(W: {\mathbb R}^N\to [0,\infty)\) is a measurable function such that NEWLINE\[NEWLINE \int_{{\mathbb R}^N} W(x)|u|^2\leq \alpha_1 \|\nabla u\|^2_2 +\alpha_2 \|u\|^2_2 NEWLINE\]NEWLINE holds for any \(u\in H^1({\mathbb R}^N)\) and some \(\alpha_1>0,\) \(\alpha_2\geq 0.\)
    0 references

    Identifiers