On the representation of functions by an integral in the eigenfunctions of the Bessel operator (Q2704022)

From MaRDI portal





scientific article
Language Label Description Also known as
English
On the representation of functions by an integral in the eigenfunctions of the Bessel operator
scientific article

    Statements

    0 references
    0 references
    3 October 2001
    0 references
    Neumann function
    0 references
    Struve function
    0 references
    On the representation of functions by an integral in the eigenfunctions of the Bessel operator (English)
    0 references
    The authors have presented the expansion in an integral of the form NEWLINE\[NEWLINEf(x)=\int^\infty_0 Y_\nu(x\xi)\sqrt{x\xi} F(\xi)d\xi,\quad \nu\in (-1,1),NEWLINE\]NEWLINE where \(Y_\nu(z)\) is the Neumann function of order \(\nu\), and an estimation of the norm of the function \(f\) in the space \(L_2(0,\infty)\) via the norm of the function \(F\). It is shown that the function \(F(\xi)\) can be found by the formula NEWLINE\[NEWLINEF(\xi)=\int^\infty_0\sqrt{t\xi} \mathbb{H}_\nu(\xi t)f(t)dt, \text{ for }\nu\in (-1,0),NEWLINE\]NEWLINE where \(\mathbb{H}_\nu(z)\) is the Struve function, and by the formula NEWLINE\[NEWLINEF(\xi)=\int^\infty_0\sqrt{t\xi} \overline{\mathbb{H}}_\nu(\xi t)f(t)dt, \text{ for }\nu\in(0,1),NEWLINE\]NEWLINE where \(\overline\mathbb{H}_\nu(z)=\mathbb{H}_\nu(z)-2^{1-\nu}z^{\nu-1}/[\sqrt\pi \Gamma(\nu+1/2)]\). Moreover, the estimate NEWLINE\[NEWLINEm\|f\|_{L_2(0,\infty)}\leq \|F\|_{L_2(0,\infty)}\leq M\|f\|_{L_2(0,\infty)}NEWLINE\]NEWLINE is valid.
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references