On the Banach-isomorphic classification of \(L_p\) spaces of hyperfinite von Neumann algebras (Q2704627)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the Banach-isomorphic classification of \(L_p\) spaces of hyperfinite von Neumann algebras |
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the Banach-isomorphic classification of \(L_p\) spaces of hyperfinite von Neumann algebras |
scientific article |
Statements
7 May 2001
0 references
non-commutative \(L_p\) space
0 references
Banach space isomorphism
0 references
semifinite hyperfinite von Neumann algebras
0 references
On the Banach-isomorphic classification of \(L_p\) spaces of hyperfinite von Neumann algebras (English)
0 references
The authors announce a complete Banach space classification of \(L_p\) spaces associated with semifinite hyperfinite von Neumann algebras. Each such space (\(p\neq 2\)) is isomorphic to one of the following, pairwise non-isomorphic, spaces: \(\ell_p\), \(L_p\), \(S_p\), \(C_p\), \(S_p\oplus L_p\), \(L_p(S_p)\), \(C_p\oplus L_p\), \(L_p(C_p)\), \(C_p\oplus L_p(S_p)\), \({\L}_p({\mathcal R})\), \(C_p\oplus{\L}_p({\mathcal R})\), \({\L}_p({\mathcal R})\oplus L_p(C_p)\), \({\L}_p({\mathcal R}_{0,1})\). Here \(S_p\) is the \(L_p\) space associated with the von Neumann algebra \(\bigoplus_{n=1}^\infty M_n\).
0 references