On a trigonometric inequality of Vinogradov (Q2705092)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On a trigonometric inequality of Vinogradov |
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On a trigonometric inequality of Vinogradov |
scientific article |
Statements
7 June 2001
0 references
trigonometric sum
0 references
Vinogradov inequality
0 references
1.0000004
0 references
1.0000004
0 references
0.91033745
0 references
0.9061061
0 references
0 references
0 references
0.8972805
0 references
0.89631695
0 references
0.89626664
0 references
On a trigonometric inequality of Vinogradov (English)
0 references
Here the author improves a result of \textit{T. Cochrane} [J. Number Theory 27, 9-16 (1987; Zbl 0629.10030)]: Let \(m\) and \(n\) be positive integers with \(m>1\). Set NEWLINE\[NEWLINEf(m,n)= \sum_{s=1}^{m-1} \left(\biggl|\sin \frac{\pi an}{m}\biggr|\biggl/ \sin\frac{\pi a}{m} \right).NEWLINE\]NEWLINE Theorem 1: For any positive integers \(m,n\) with \(m>1\), we have NEWLINE\[NEWLINEf(m,n)< \frac{4m}{\pi^2} \biggl( \log m+ \frac 34+ \gamma- \log\frac\pi 2 \biggr)+ \frac 2\pi \biggl( 2-\frac 1\pi \biggr).NEWLINE\]NEWLINE Theorem 2: For any positive integers \(m>1\), we have NEWLINE\[NEWLINE\frac 1m \sum_{n=1}^m f(m,n)< \frac{4m}{\pi^2} \biggl( \log m+ \gamma- \log \frac\pi 2 \biggr)+ \frac 2\pi \biggl( 2- \frac 1\pi \biggr)- \frac{1}{6m} \biggl(1- \frac 1m \biggr).NEWLINE\]
0 references