Singular perturbation solutions of a class of systems of singular integral equations (Q2706076)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Singular perturbation solutions of a class of systems of singular integral equations |
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Singular perturbation solutions of a class of systems of singular integral equations |
scientific article |
Statements
19 March 2001
0 references
system of singular integral equations
0 references
system of integro-differential equations
0 references
asymptotic analysis
0 references
singular perturbation
0 references
bridged interface crack
0 references
Singular perturbation solutions of a class of systems of singular integral equations (English)
0 references
The authors examine a new class of systems of strongly singular integrodifferential equations which emerges in the study of the bridged interface crack growth. Let \(u(x)=(u_1(x), u_2(x))^T\), \(-1<x<1\), a two-dimensional \(C^1\) vector function, \(\alpha_1, \alpha_2, \alpha_3, \alpha_4\) real numbers, NEWLINE\[NEWLINE\alpha_0= \sqrt{\alpha_1 \alpha_2-\alpha_3}\quad\text{and}\quad \Lambda= {1\over \alpha_0} \left(\begin{matrix} \alpha_1 & \alpha_3+i \alpha_4\\ \alpha_3-i\alpha_4 & \alpha_2\end{matrix} \right)NEWLINE\]NEWLINE be a complex \(2\times 2\) positive-definite matrix. If \(a\) and \(f\) are functions defined on the open interval \(]-1,1[\) define the convolution integration NEWLINE\[NEWLINE(a*f)(x)= \int^1_{-1}a (x-t)f(t)dt.NEWLINE\]NEWLINE The authors consider the system NEWLINE\[NEWLINE\varepsilon\left( {1\over\pi} \text{Re}\left( {1\over(x-i\alpha_0)^2} \Lambda\right) *u(x)+T(x) \right)+ f\bigl(u(x),x\bigr)=0 \tag{1}NEWLINE\]NEWLINE for \(\varepsilon\ll 1\), \(-1<x<1\), with auxiliary condition \(u(\pm 1)=0\) and where NEWLINE\[NEWLINE\left( \begin{matrix} a & b\\ c & d\end{matrix} \right)* {f\choose g}=\left( \begin{matrix} a*f & b*g \\ c*f & d*g \end{matrix} \right).NEWLINE\]NEWLINE Consider \(\Lambda= \Lambda_1-i \Lambda_2\) where NEWLINE\[NEWLINE\Lambda_1={1 \over\alpha_0} \left(\begin{matrix} \alpha_1 & \alpha_3 \\ \alpha_3 & \alpha_2 \end{matrix}\right), \quad\Lambda_2= {1\over\alpha_0} \left( \begin{matrix} 0 & -\alpha_4 \\ \alpha_4 & 0\end{matrix} \right)NEWLINE\]NEWLINE then the system (1) becomes NEWLINE\[NEWLINE\varepsilon\left( {1\over\pi} \Lambda_1\int^1_{-1} {1\over(x-\xi)^2} u(\xi)d\xi- \Lambda_2 {d\over dx}u(x)+ T(x)\right) +f\bigl(u(x), x\bigr) =0, \quad -1<x<1. \tag{2}NEWLINE\]NEWLINE Systems (1) or (2) represent an equilibrium of total forces acting on the surfaces of a bridged interface crack. The convolution term in (1) corresponds to the nondimensional crack resistence with the matrix \(\Lambda\) determined by the elastic parameters of the bimaterial. The parameter \(\varepsilon\) is the inverse of the nondimensional crack length \(\ell={K_0L \over \alpha_0}\) where \(K_0\) is the strength of the bridging force and \(L\) is the physical crack length.NEWLINENEWLINENEWLINEThe authors generalize the singular perturbation method to solve the problem (1) or (2). Explicit expressions for the asymptotic solutions up to the \(\varepsilon\) order are presented for two reasons. First, for the general case of a bridged interface crack problem in an anisotropic bimaterial where the bimaterial constant matrices \(\Lambda_1\) and \(\Lambda_2\) are unrestricted. Second, for a special case where in the matrix \(\Lambda_1\) the component \(\alpha_3=0\) which is the case of an isotropic bimaterial.
0 references